Bilbao Crystallographic Server Group-Subgroup Relations of Space Groups

I. Maximal subgroup database
 II. Group-subgroup suite
 III. Structure utilities II

 -equivalent descriptions
 -descriptions compatible with symmetry reduction

Crystallographic Databases

International Tables for Crystallography

Space-group Data

International Tables for Crystallography

Volume A: Space-group symmetry

generators Wyckoff positions Wyckoff sets normalizers Volume A1: Symmetry Relations between space groups maximal subgroups of index 2,3 and 4 series of isomorphic subgroups

Retrieval tools

	I4/mmm	No. 139	I4/m2/m2/m	$D_{\scriptscriptstyle 4h}^{\scriptscriptstyle 17}$
	Generators selected (1); t(1)General positionMultiplicity, Wyckoff letter, Site symmetry3201	$(1,0,0); t(0,1,0); t(0,0,1); t(\frac{1}{2},\frac{1}{2},\frac{1}{2}); (2); (2); (3)$ $(0,0,0)+$ $(1) x, y, z (2) \bar{x}, \bar{y}, z (5) \bar{x}, y, \bar{z} (6) x, \bar{y}, \bar{z} (6) x, \bar{y}, \bar{z} (9) \bar{x}, \bar{y}, \bar{z} (10) x, y, \bar{z} (13) x, \bar{y}, z (14) \bar{x}, y, z (14) $	(3); (5); (9) nates $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})+$ (3) \bar{y}, x, z (4) y, \bar{x}, z (7) y, x, \bar{z} (8) $\bar{y}, \bar{x}, \bar{z}$ (11) y, \bar{x}, \bar{z} (12) \bar{y}, x, \bar{z} (15) \bar{y}, \bar{x}, z (16) y, x, z	GENPOS
Example ITAI: Space group	I Maximal translationengleich [2] I ⁴ 2m (121) [2] I ⁴ m2 (119) [2] I4mm (107) [2] I422 (97) [2] I4/m11 (87, I4/m) [2] I2/m2/m1 (71 Immm) [2] I2/m12/m (69, Fmmm)	<i>ie</i> subgroups (1; 2; 5; 6; 11; 12; 15; 16)+ (1; 2; 7; 8; 11; 12; 13; 14)+ (1; 2; 3; 4; 13; 14; 15; 16)+ (1; 2; 3; 4; 5; 6; 7; 8)+ (1; 2; 3; 4; 9; 10; 11; 12)+ (1; 2; 7; 8; 9; 10; 15; 16)+	a - b , a + b , c	MAXSUB
I4/mmm	• Loss of centring trans • Loss of centring trans [2] $P4_2/nmc$ (137) [2] $P4_2/mm$ (136) [2] $P4_2/mm$ (134) [2] $P4_2/mmc$ (131) [2] $P4/nmc$ (129) [2] $P4/nmc$ (128) [2] $P4/mnc$ (126) [2] $P4/mnc$ (126) [2] $P4/mmm$ (123) • Enlarged unit cell [3] $\mathbf{c}' = 3\mathbf{c}$ $\begin{cases} I4/mmm$ (139) I4/mmm (139) I4/mmm (139) \end{cases}	Jations 1; 2; 7; 8; 11; 12; 13; 14; (3; 4; 5; 6; 9; 1; 2; 7; 8; 9; 10; 15; 16; (3; 4; 5; 6; 11; 1; 2; 5; 6; 11; 12; 15; 16; (3; 4; 7; 8; 9; 1; 2; 5; 6; 9; 10; 13; 14; (3; 4; 7; 8; 11; 1; 2; 3; 4; 13; 14; 15; 16; (5; 6; 7; 8; 9; 1; 2; 3; 4; 9; 10; 11; 12; (5; 6; 7; 8; 13; 1; 2; 3; 4; 5; 6; 7; 8; (9; 10; 11; 12; 13; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 1 $\langle 2; 3; 5; 9 \rangle$ $\langle 2; 3; (5; 9) + (0, 0, 2) \rangle$ $\langle 2; 3; (5; 9) + (0, 0, 4) \rangle$	10; 15; 16) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 12; 13; 14) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 10; 13; 14) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 12; 15; 16) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 10; 11; 12) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 14; 15; 16) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 14; 15; 16) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 4; 15; 16 a , b ,3 c a , b ,3 c a , b ,3 c	$\frac{1/4, 3/4, 1/4}{1/4, 3/4, 1/4}$ $\frac{1/4, 3/4, 1/4}{0, 1/2, 0}$ $\frac{1/4, 1/4, 1/4}{1/4, 1/4, 1/4}$ $\frac{1/4, 1/4, 1/4}{0, 0, 1}$ $\frac{0, 0, 1}{0, 0, 2}$
	 Series of maximal ison [p] c' = pc 14/mmm (139) [p²] a' = pa, b' = pb 14/mmm (139) 	norphic subgroups $\langle 2; 3; (5; 9) + (0, 0, 2u) \rangle$ $p > 2; 0 \le u < p$ p conjugate subgroups for the prime $p\langle (2; 9) + (2u, 2v, 0); 3 + (u + v, -u + v, 0);5 + (2u, 0, 0) \ranglep > 2; 0 \le u < p; 0 \le v < pp^2 conjugate subgroups for the prime p$	a,b, <i>p</i> c <i>p</i> a, <i>p</i> b,c	0,0, <i>u</i> SERIES <i>u</i> , <i>v</i> ,0
	I Minimal translationengleich [3] Fm3m (225); [3] Im3m (225) II Minimal non-isomorphic k • Additional centring tr • Decreased unit cell	e supergroups 9) lassengleiche supergroups ranslations	none	MINSUP

DATA- MAXIMAL ISOMORPHIC MAXSUB BASE: SUBGROUPS

Maximal subgroups of group 139 (I4/mmm)

Note: The program uses the default choice for the group settings.

table the list of maximal subgroups is given. Click over "setting..." to see the possible setting(s) for t

Ν	IT number	HM symbol	Index	Transformations
1	69	Fmmm	2	show
2	71	Immm	2	show
3	87	I4/m	2	show
4	97	/422	2	show
5	107	l4mm	2	show
6	119	I-4 <i>m</i> 2	2	show
7	121	I-42m	2	show
8	123	P4/mmm	2	show
9	126	P4/nnc	2	show
10	128	P4/mnc	2	show
11	129	P4/nmm	2	show
12	131	P4 ₂ /mmc	2	show
13	134	P4 ₂ /nnm	2	show
14	136	P4 ₂ /mnm	2	show
15	137	P4 ₂ /nmc	2	show
16	139	I4/mmm	3	show

DATA- MAXIMAL ISOMORPHIC MAXSUB BASE: SUBGROUPS

Maximal subgroup(s) of type 69 (Fmmm) of index 2

for Space Group 139 (I4/mmm)

Click over [ChBasis] to view the general positions of the subgroup in the basis of the supergroup.

	Co	njuga	icy cl	ass a	l .	
Subgroup(s)	Tra	nsfo	rmat	ion I	Matrix	More
group No 1	(-1 0	1 1 0	0 0 1	0 0 0	ChBasis

[Click here for the Maximal Subgroups of group 69]

Problem: MAXIMAL ISOMORPHIC SUBGROUPS SERIES

International Tables, Volume A1, space group 14/m (No. 87)

• Series of maximal isomorphic subgroups

$[p] \mathbf{c}' = p\mathbf{c}$		
I4/m (87)	(2; 3; 5+(0,0,2u))	a , b , <i>p</i> c
	p > 2; 0 < u < p	, , <u>,</u>
	p conjugate subgroups for the prime p	
$[p^2]$ $\mathbf{a}' = p\mathbf{a}, \mathbf{b}' = p\mathbf{b}$		
I4/m (87)	$\langle (2; 5) + (2u, 2v, 0); 3 + (u + v, -u + v, 0) \rangle$	$p\mathbf{a}, p\mathbf{b}, \mathbf{c}$
	$p > 2; 0 \le u < p; 0 \le v < p$	
	p^2 conjugate subgroups for prime $p \equiv 3 \pmod{4}$	
$[p=q^2+r^2] \mathbf{a}'=q\mathbf{a}-r\mathbf{b},$	$\mathbf{b}' = r\mathbf{a} + q\mathbf{b}$	
I4/m (87)	$\langle (2; 5) + (2u, 0, 0); 3 + (u, -u, 0) \rangle$	$q\mathbf{a} - r\mathbf{b}, r\mathbf{a} + q\mathbf{b}, \mathbf{c}$
	$q > 0; r > 0; p > 4; 0 \le u < p$	
	p conjugate subgroups for prime $p \equiv 1 \pmod{4}$	

INFINITE number of maximal isomorphic subgroups

Series of Maximal Isomorphic Subgroups

Series of maximal isomorphic subgroups

For each space group you can obtain the list with its maximal isomorphic subgroups. The list contains the numbers and the symbols of the maximal subgroups as well as, the corresponding index and the transformation matrix that relates the basis of the group with that of the subgroup.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

If you are interested in other publications related to Bilbao Crystallographic Server, click here Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or Maximum index: Optional: only subgroups with the chosen index NOTE: the program uses the default choice for the group setting. NOTE: the maximum index available is 131.

Show series

Static databases

[Bilbao Crystallographic Server Main Menu]

Bilbao Crystallographic Server http://www.cryst.ehu.es Data generated online (max. index 131)

Series of maximal isomorphic subgroups of group 87 (I4/m)

Note: Only series with an index less or equal to 27 are displayed

Series 1

Parametric form of the series 1 of maximal isomorphic subgroups of space group 87 (14/m)

Subgroup	Index	Transformation Condition	IS
<i>l4/m</i> (87)	р	[1 0 0 0] [0 1 0 0] [0 0 p u] 0 <= u < p	

Static Databases

Number of conjugate subgroups: p conjugate subgroups for the prime p

Click over [show..] to view a specific transformation for a given index

Ν	IT number	HM symbol	Index	Transformations
1	87	I4/m	3	show
2	87	I4/m	5	show
3	87	I4/m	7	show
4	87	I4/m	11	show
5	87	I4/m	13	show
6	87	I4/m	17	show
7	87	I4/m	19	show
8	87	I4/m	23	show

Crystallographic computing programs

THE GROUP-SUBGROUPS SUITE

		the second	
		n Folglione of	Space Creupe
	P. 11101012811		
the second se	in all the second se		the standard and the ball and a stand

SUBGROUPGRAPH	Lattice of Maximal Subgroups
HERMANN	More group-subgroup relations
COSETS	Coset decomposition for a group-subgroup pair
WYCKSPLIT	The splitting of the Wyckoff Positions
MINSUP	Minimal Supergroups of Space Groups
SUPERGROUPS	Supergroups of Space Groups
CELLSUB	List of subgroups for a given k-index.
CELLSUPER	List of supergroups for a given k-index.
COMMONSUBS	Common Subgroups of Two Space Groups
COMMONSUPER	Common Supergroups of Two Space Groups

- Determination of prototype structures

http://www.cryst.ehu.es/subgroupgraph.html

Chains of maximal subgroups

Group-subgroup pair

$$\mathcal{G} > \mathcal{H}$$
 : \mathcal{G} , \mathcal{H} , $[i]$, (P,p)

Pairs: group - maximal subgroup

$$\mathcal{Z}_k > \mathcal{Z}_{k+1}, \ (\mathbf{P}, \mathbf{p})_k$$

$$(\mathbf{P},\mathbf{p})=\prod_{k=1}^{n}(\mathbf{P},\mathbf{p})_{k}$$

Problem 7.1

Study the group--subgroup relations between the groups $G=P4_12_12$, No.92, and $H=P2_1$ No.~4 using the program SUBGROUPGRAPH. Consider the cases with specified index e.g. [i]=4, and not specified index of the group-subgroup pair.

SOLUTION

SUBGROUPGRAPH: $P4_12_12 > P2_1$

SOLUTION

SUBGROUPGRAPH: $P4_12_12 > P2_1$, index 4

Complete graph for $P4_1Z_1Z > PZ_1$, index 4. Three $P2_1$ subgroups in two conjugacy classes

Problem 7.2

Explain the difference between the contracted and complete graphs of the t-subgroups of P4mm (No. 99) obtained by the program SUBGROUPGRAPH. Compare the complete graph with the results of Problems 3.2 and 4.1. Explain why the t-subgroup graphs of all 8 space groups from No. 99 P4mm to No. 106 P4₂bc have the same `topology' (i.e. the same type of `family tree'), only the corresponding subgroup entries differ.

SOLUTION

Help

Bilbao Crystallographic Server → SUBGROUPGRAPH

Group-Subgroup Lattice and Chains of Maximal Subgroups

Lattice and chains	Please, enter the sequential numbers of group and subgroup as given in				
	international tables for Crystallography, vol. A.				
For a given group and supergroup the	Enter supergroup number (G) or choose it:				
lattice of maximal subgroups that relates	Enter subgroup number (H) or choose it:				
these two groups and, in the case that the	Enter the index [G:H] (optional):				
of maximal subgroup that relate the two groups. In the latter case, also there is a possibility to obtain all of the different	Construct the lattice				
subgroups of the same type.					
	What INIPLIT data should be				

uala should de v v nat n introduced?

SUBGROUPS CALCULATIONS: HERMANN

PROBLEMS:

No tools for space groups involving series of isomorphic subgroups

High indices: Hermann group method

It

lk

Hermann, 1929:

For each pair $G > \mathcal{H}$, there exists a uniquely defined intermediate subgroup $\mathcal{M}, G \ge \mathcal{M} \ge \mathcal{H}$, such that:

> \mathcal{M} is a t-subgroup of \mathcal{G} \mathcal{H} is a k-subgroup of \mathcal{M}

Example: $Pm-3m > P2_1/m$ with index 24

Hermann Group M= P2/m

Problem: CLASSIFICATION OF DOMAINS

HERMANN

Problem 7.3

The retrieval tool MAXSUB gives an access to the database on maximal subgroups of space groups as listed in ITA1. Consider the maximal subgroups of the group Pmna (No.53). Compare its k-subgroups obtained by doubling the b lattice parameter, i.e. a',b',c' = a,2b,c and compare with the list of subgroups derived in Problem 4.2.

Problem 7.5

At high temperatures, BiTiO₃ has the cubic perovskite structure, space group Pm-3m. Upon cooling, it distorts to three slightly deformed structures, all three being ferroelectric, with space groups P4mm, Amm2 and R3m. Can we expect twinned crystals of the low symmetry forms? If so, how many kinds of domains?

What program can be used? What INPUT data should be introduced?

Index [i] for a group-subgroup pair G>H

Hermann, 1929:Example: Pb3(VO4)2
$$[i]=[i_P].[i_L]$$
 $[i]=3.2=6$ \mathcal{G}
 \downarrow \mathcal{R}_{-3m}
 \downarrow \mathcal{M} $i_P=P_G/P_H$ \mathcal{M} $i_P=P_G/P_H=3$
 $\mathcal{C}2/m$ \mathcal{M} $i_L=Z_H/Z_G$ \mathcal{H} $\mathcal{P}2_1/c$

 \mathcal{M} is a t-subgroup of \mathcal{G}

 \mathcal{H} is a k-subgroup of \mathcal{M}

martes 23 de junio de 2009

Transformation matrix (P,p) for G>H Group-subgroup graph

Input for SUBGROUPGRAPH

Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:					
Enter supergroup number (G) or choose it:	166				
Enter subgroup number (H) or choose it:	14				
Enter the index [G:H] (optional):	6				

Construct the lattice

Group-subgroup graph for Pb₃(VO₄)₂

Ferroelastic phase transition $Pb_3(VO_4)_2$

Transformation matrix (P,p) for G>H

Subgroups P21/c of R-3m of index 6 (data ITA1)

Ch	ec	k	Chain [indices]	Chain with HM symbols		Transformation	Identical
•	,	1	166 012 014 <mark>[</mark> 3 2]	R-3m > C2/m > P2 ₁ /c	($\begin{pmatrix} 0 & -1 & 1/3 & 0 \\ 0 & -1 & -1/3 & 0 \\ 1 & 0 & 2/3 & 0 \end{pmatrix}$	
е		2	166 012 014 <mark>[</mark> 3 2]	R-3m > C2/m > P2 ₁ /c	($\begin{pmatrix} 0 & 1 & 1/3 & 0 \\ 0 & 0 & 2/3 & 0 \\ 1 & 0 & 2/3 & 0 \end{pmatrix}$	
С		3	166 012 014 <mark>[</mark> 3 2]	R-3m > C2/m > P2 ₁ /c	($\begin{pmatrix} 0 & 0 & -2/3 & 0 \\ 0 & 1 & -1/3 & 0 \\ 1 & 0 & 2/3 & 0 \end{pmatrix}$	

Problem: LATTICE CELLTRAN DISTORTION STRAIN

Example: Ferroelastic phase transition $Pb_3(VO_4)_2$

Problem 7.6

SrTiO₃ has the cubic perovskite structure, space group Pm-3m. Upon cooling below 105K, the coordination octahedra are mutually rotated and the space group is reduced to I4/mcm; c is doubled and the unit cell is increased by the factor of four. Can we expect twinned crystals of the low symmetry form? If so, how many kinds of domains?

Problem: COSET COSET COSET DECOMPOSITION

_								
	Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:							
	Enter supergroup number (G) or choose it:							
	Enter subgroup number (H) or choose it:							
	Please, define the transformation that relates t	the group and the subgroup bases.						
		Rotational part	Origin Shift					
		1 0 0	0					
	Enter transformation matrix :	0 1 0	0					
		0 0 1	0					
	Decomposition:	left 🔍 right						

right: G>H, G=H+H(W₂,w₂) + ...+ H(W_n,w_n) $\Delta = t_H$ left: G>H, G=H+(V₂,v₂)H + ...+ (V_n,v_n)H $\Delta = V_2 t_H$

Problem 7.7

Consider the group--subgroup pair G=R-3m, No.~166, and $H=P2_1/c$, No.14, of index [i]=6. The relations between the conventional basis (a,b,c) of R-3m (hexagonal axes) and that of $P2_1/c$, (a',b',c') (unique axis b, cell choice 1) are as follows: a'=1/3(2a+b+c), b'=b, c'=-2a-b. Compare the right and left coset decompositions of R-3m with respect to $H=P2_1/c$ obtained by the program COSETS. Explain the differences between the two decompositions, if any.

SUPERGROUPS OF SPACE GROUPS

Group-supergroup relations

Applications

Or Possible high-symmetry structures
 Or Possible high-symmetry
 Or Possible h

Prediction of phase transitions

Prototype structures

Supergroups of the same type

 $\mathcal{H} = P222$ $\mathcal{G} = P422$ $P422 = P222 + (4|\omega)P222$

Supergroups calculation: SUPERGROUPS

http://www.cryst.ehu.es/supergroups.html

THE SUPERGROUPS SUITE

MINSUP, SUPERGROUPS, COSETS CELLSUPER & COMMONSUPER

A DESCRIPTION OF TAXABLE A DESCRIPTION OF TAXA	And the second sec	party 1. program program with a start	and the second s
		SUBBE ALS	naca Graune
Constantined leads and the Constant States	seed. " bellowithout and the bedrack		adverturburg the deliver of the little

SUBGROUPGRAPH	Lattice of Maximal Subgroups
HERMANN	More group-subgroup relations
COSETS	Coset decomposition for a group-subgroup pair
WYCKSPLIT	The splitting of the Wyckoff Positions
MINSUP	Minimal Supergroups of Space Groups
SUPERGROUPS	Supergroups of Space Groups
CELLSUB	List of subgroups for a given k-index.
CELLSUPER	List of supergroups for a given k-index.
COMMONSUBS	Common Subgroups of Two Space Groups
COMMONSUPER	Common Supergroups of Two Space Groups

Problem 8.1

Consider the group--supergroup pair H< G with H = P222, No. 16, and the supergroup G= P422, No. 89, of index [i]=2. Using the program MINSUP determine all supergroups P422 of P222 of index [i]=2. How does the result depend on the normalizer of the supergroup and/or that of the subgroup.

SOLUTION

Subgroup Normalizer: Euclidean tetragonal axis: along c

No	Transform	ation matrix	Coset representatives	Wyckoff Splitting	More
1	[1 0 [0 1 [0 0	0] [0] 0] [0] 1] [0]	(x, y, z) (-y, x, z)	[WP splitting]	Full cosets
2	[1 0 [0 1 [0 0	0] [1/2] 0] [0] 1] [0]	(x, y, z) (-y-1/2, x+1/2, z)	[WP splitting]	Full cosets

SOLUTION

Subgroup Normalizer: Affine

No		Trans	sforma	tion matrix	¢	Coset representatives	Wyckoff Splitting	More
1	[[[1 0 0	0 1 0	0] [0] [1] [0] 0] 0]	(x, y, z) (-y, x, z)	[WP splitting]	Full cosets
2	[[[1 0 0	0 1 0	0] [0] [1] [1/2] 0] 0]	(x, y, z) (-y-1/2, x+1/2, z)	[WP splitting]	Full cosets
3	[[[0 1 0	0 0 1	1] [0] [0] [0] 0] 0]	(x, y, z) (z, y, -x)	[WP splitting]	Full cosets
4	[[[0 1 0	0 0 1	1] [0] [0] [0] 1/2] 0]	(x, y, z) (z-1/2, y, -x-1/2)	[WP splitting]	Full cosets
5	[[[0 0 1	1 0 0	0] [1] [0] [0] 0] 0]	(x, y, z) (x, -z, y)	[WP splitting]	Full cosets
6	[[[0 0 1	1 0 0	0] [1] [0] [1/2] 0] 0]	(x, y, z) (x, -z-1/2, y+1/2)	[WP splitting]	Full cosets

supergroup tetragonal axis

along c

along a

along b

Problem 8.2

Consider the minimal supergroups of Pna2₁ obtained by the program MINSUP. Explain the differences between the relations between the conventional bases for the group-subgroup pair Pnma>Pna2₁, [i]=2 (e.g. accessed by the program MAXSUB), and the corresponding relations for the supergroup-group pair Pnma>Pna2₁, [i]=2 (e.g. the program MINSUP).

RELATIONS BETWEEN WYCKOFF POSITIONS

Splitting of Wyckoff positions

Applications

- ◊ Derivative structures
- Symmetry modes

SYMMETRY REDUCTION

$$\mathcal{G} = Pmm2 > \mathcal{H} = Pm$$
, $[i] = 2$

ITAI Space group P4₂/mnm (selection)

 D_{4h}^{14}

 $P4_2/m2_1/n2/m$

No. 136

 $P4_2/mnm$

	Axes	Coordinates		Wyckoff positions				
			2a	2b	4c	4d	4e	4f
				4 <i>g</i>	8 <i>h</i>	8 <i>i</i>	8 <i>j</i>	16 <i>k</i>
I Maximal tra	inslatione	engleiche subg	groups			-		
[2] <i>P</i> 4 <i>n</i> 2 (118)		$x + \frac{1}{2}, y, z + \frac{1}{4}$	2d	2c	4e	2a;2b	4h	4g
		_		4f	$2 \times 4e$	8 <i>i</i>	8 <i>i</i>	$2 \times 8i$
$[2] P\bar{4}2_1m(113)$		$x + \frac{1}{2}, y, z + \frac{1}{4}$	2c	2c	4d	2a;2b	$2 \times 2c$	4 <i>e</i>
				4 <i>e</i>	$2 \times 4d$	8 <i>f</i>	$2 \times 4e$	$2 \times 8f$
$[2] P4_2 nm(102)$			2a	2a	4 <i>b</i>	4 <i>b</i>	$2 \times 2a$	4c
				4 <i>c</i>	$2 \times 4b$	8 <i>d</i>	$2 \times 4c$	$2 \times 8d$
$[2] P4_{2}2_{1}2(94)$			2a	2 <i>b</i>	4d	4 <i>d</i>	4 <i>c</i>	4 <i>e</i>
				4 <i>f</i>	$2 \times 4d$	8 <i>g</i>	8 <i>g</i>	$2 \times 8g$
$[2] P4_2/m(84)$		$x + \frac{1}{2}, y, z$	2d	2c	2a;2b	2e;2f	4 <i>i</i>	4 <i>j</i>
		2		4 <i>j</i>	4g;4h	$2 \times 4j$	8 <i>k</i>	$2 \times 8k$
[2] <i>Pnnm</i> (58)			2a	2b	2c;2d	4f	4 <i>e</i>	4g
				4 <i>g</i>	$2 \times 4f$	$2 \times 4g$	8 <i>h</i>	$2 \times 8h$
[2] <i>Cmmm</i> (65)	a-b,	$\frac{1}{2}(x-y),$	2 <i>a</i> ;2 <i>c</i>	2b;2d	4 <i>e</i> ;4 <i>f</i>	8 <i>m</i>	4k;4l	4 <i>h</i> ;4 <i>i</i>
	a+b, c	$\frac{1}{2}(x+y), z;$		4 <i>g</i> ;4 <i>j</i>	$2 \times 8m$	8 <i>p</i> ;8 <i>q</i>	8n;80	$2 \times 16r$
		$+(\frac{1}{2},\frac{1}{2},0)$						

Example

Example: WYCKSPLIT: P4₂/mnm>Cmmm, index 2

Wyckoff Positions Splitting

136 (P42/mnm) > 65 (Cmmm)

Splitting of Wyckoff position 4g

	Represent	Subgroup Wyckoff position		
No	group basis	subgroup basis	name[n]	representative
1	(x, -x, 0)	(x, 0, 0)		(x ₁ , 0, 0)
2	(-x, x, 0)	(-x, 0, 0)	4a.	(-x ₁ , 0, 0)
3	(x+1, -x, 0)	(x+1/2, 1/2, 0)	ופי	(x ₁ +1/2, 1/2, 0)
4	(-x+1, x, 0)	(-x+1/2, 1/2, 0)		(-x ₁ +1/2, 1/2, 0)
5	(x+1/2, x+1/2, 1/2)	(0, x+1/2, 1/2)		(0, y ₂ , 1/2)
6	(-x+1/2, -x+1/2, 1/2)	(0, -x+1/2, 1/2)	4 i.	(0, -y ₂ , 1/2)
7	(x+1/2, x-1/2, 1/2)	(1/2, x, 1/2)	147	(1/2, y ₂ +1/2, 1/2)
8	(-x+1/2, -x-1/2, 1/2)	(1/2, -x, 1/2)		(1/2, -y ₂ +1/2, 1/2)

Problem 9.2

Study the splittings of the Wyckoff positions for the groupsubgroup pair P4mm (No.99) > Cm (No.4) of index 4 by the program WYCKSPLIT. Compare the results with the data obtained in Problem 5.1.

Symmetry Relations between Crystal Structures

Problem: Symmetry Relations between Crystal Structures Baernighausen Trees

U. Mueller, Gargnano 2008

Modul design of crystal symmetry relations

Scheme of the general formulation of the smallest step of symmetry reduction connecting two related crystal structures

U. Mueller, Gargnano 2008

Family tree of hettotypes of ReO3

Baernighausen Trees

Basic tools for structure symmetry relations

Baernighausen Trees

Group-Subgroup relations

Wyckoff-splitting schemes

Family tree of hettotypes of ReO3

Problem 10.1 Cristobalite phase transitions

At low temperatures, the space-group symmetry of cristobalite is given by the space group is P4₁2₁2 (92) with lattice parameters a=4.9586A, c=6.9074A. The four silicon atoms are located in Wyckoff position 4(a) ..2 with the coordinates x, x, 0; -x, -x, 1/2; 1/2-x, 1/2+x, 1/4; 1/2+x, 1/2-x, 3/4, x = 0.3028.

During the phase transition, the tetragonal structure is transformed into a cubic one with space group Fd-3m (227), a=7.147A. It is listed in the space-group tables with two different origins. If 'Origin choice 2' setting is used (with point symmetry -3m at the origin), then the silicon atoms occupy the position 8(a) -43m with the coordinates 1/8, 1/8, 1/8; 7/8, 3/8, 3/8 and those related by the face-centring translations.

Describe the structural distortion from the cubic to the tetragonal phase by the determination of (i) the displacements if the Si atoms in relative and absolute units, and (ii) the changes on the lattice parameters during the transition.

Which programs can be used for the analysis of the cristobalite problem?

SUBGROUPGRAPH Symmetry break $Fd-3m(227) \rightarrow P4_12_12(92)$ Index? Transformation matrix?

TRANSTRU

Problem 10.1

SOLUTION

Symmetry break: Fd-3m \rightarrow P4₁2₁2 $a_t=1/2(a_c-b_c), b_t=1/2(a_c+b_c), c_t=c_c$ origin shift: (5/8,3/8,3/8)

Problem 10.2

CaF₂ - structure data (fcc, a=b=c, $\alpha=\beta=\gamma$)

Ca
$$4a \ m\bar{3}m$$
 0,0,0 $\frac{1}{2}, \frac{1}{2}, 0$ $\frac{1}{2}, 0\frac{1}{2}$ 0, $\frac{1}{2}, \frac{1}{2}$
F $8c \ \bar{4}3m$ $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ $\frac{1}{4}, \frac{3}{4}, \frac{3}{4}$ $\frac{3}{4}, \frac{1}{4}, \frac{3}{4}$ $\frac{3}{4}, \frac{3}{4}, \frac{$

Coordinate transformation

$$\mathbf{a}' = \frac{1}{2}(\mathbf{a} - \mathbf{b}), \ \mathbf{b}' = \frac{1}{2}(\mathbf{a} + \mathbf{b}), \ \mathbf{c}' = \mathbf{c}$$

p=1/4,0,1/4

Problem 10.2

Questions:

- (i) Display the relation between the new and the old basis.
- (ii) Which is the crystal system of the new unit cell?
- (iii) Construct the transformation matrix P and the corresponding 4x4 augmented matrix.
- (iv) Determine the ratio of the new and old unit cell volumes.

(v) New coordinate-system description of the structure.

(iv) New description: program TRANSTRU

Transform Structure

Structure	225 5.0 5.0 5.0 90 90 90 2 Ca 1 4a 0.0 0.0 0 F 2 8c 0.25 0.25 0.25	
Low symmetry Space Group	129	
Transformation Matrix:		
	Rotational part	Origin Shift
1	1/2 1/2 0	1/4
In matrix form:	-1/2 1/2 0	0
	0 0 1	1/4

Transform structure

Transformation matrix: 1/2a-1/2b+1/4,1/2a+1/2b,c+1/4

High symmetry structure

225 5.0 5.0 5.0 90 90 90 2 Ca 1 4a 0.0 0.0 0 F 2 8c 0.25 0.25 0.25

Low symmetry structure

129					
3.53553	4 3.53	5534 5.00	000000 90.000000	90.000000 90.0	00000
3					
Ca	1	2c	0.750000	0.750000	0.750000
F	2	2a	0.750000	0.250000	0.000000
F	2 2	2b	0.250000	0.750000	0.500000

Space Group: 129 Lattice Parameters: 3.535534 3.535534 5 90 90 90

AT	#	WP	Coordinates			
Ca	1	2c	3/4	3/4	3/4	
F	2	2a	3/4	1/4	0	
F	2_2	2b	1/4	3/4	1/2	

Note: You can save the CIF file and visualize it with an application as Jmol

Normalizers of space groups

Normalizers N(G) : $g^{-1}{G}g = {G}$ ${ G}$ ${ G}$

> the symmetry of symmetry

Space group: Pmmn (a,b,c)

Euclidean normalizer: Pmmm (1/2a,1/2b,1/2c)

Normalizers for specialized metrics

Space group: Pmmn (a,b,c),

Normalizers

Euclidean normalizer for specialized metrics: P4/mm (1/2a,1/2b,1/2c)

Applications:

Equivalent point configurations Wyckoff sets Equivalent structure descriptions

Normalizers of space groups NORMALIZER

Cosets representatives of the Affine Normalizer with respect to the Space Group 99 (P4mm)

The Affine normalizer coincides with the Euclidean one.

Transformation of the Wyckoff Positions of Space Group 99 (P4mm) under Affine Normalizer N(G):

Coset Representative 1						Transformed WP
x,y,z	[[[1 0 0	0 1 0	0] [0] [1] [0] 0] 0]	abcdefg
x+1/2,y+1/2,z	[[[1 0 0	0 1 0	0] [0] [1] [1/2] 1/2] 0]	bacdfeg
-x,-y,-z	[[[-1 0 0	0 -1 0	0] [0] [-1] [0] 0] 0]	abcdefg
-x+1/2,-y+1/2,-z	[[[-1 0 0	0 -1 0	0] [0] [-1] [1/2] 1/2] 0]	bacdfeg
x,y,z+t	[[[1 0 0	0 1 0	0] [0] [1] [0] 0] t]	abcdefg

Index: 4*(infinite)

Symmetry-equivalent Wyckoff positions

WYCKOFF SETS

Additional Generators for the Normalizer of the Group 221 (Pm-3m)

Additional generators of Euclidean normalizer (Im-3m) a,b,c

x+1/2,y+1/2,z+1/2	[1	0	0] [1/2]
	[0	1	0] [1/2]
	[0	0	1] [1/2]

Wyckoff Sets of Space Group 221 (Pm-3m)

NOTE: The program uses the default choice for the group settings.

Letter	Mult	SS Rep.		Equivalent Positions
n	48	1	(x, y, z)	n
m	24	m	(x, x, z)	m
f	6	4m. m	(x, 1/2 , 1/2)	ef
е	6	4m. m	(x, 0, 0)	ef
d	3	4/mm. m	(1/2 , 0, 0)	cd
С	3	4/mm. m	(0, 1/2 , 1/2)	cd
b	1	m-3m	(1/2 , 1/2 , 1/2)	ab
а	1	m-3m	(0, 0, 0)	ab

Equivalent descriptions of crystal structures

Normalizer operation: x+1/2, y+1/2, z+1/2

$$1a (0,0,0)$$
 \longrightarrow
 $1b (1/2,1/2,1/2)$
 $1b (1/2,1/2,1/2)$
 \rightarrow
 $1a (0,0,0)$

Problem: EQUIVALENT DESCRIPTIONS EQUIVSTRU

Example:WOBr₄

Space Group:	
--------------	--

Euclidean Normalizer:

 $P^{1}4/mmm$

I4

Index: 4

$P4/mmm = I4 + (\bar{x}, \bar{y}, \bar{z})I4 + (y, x, z)I4 + (\bar{y}, \bar{x}, \bar{z})I4$

EQUIVALENT DESCRIPTIONS

Example:WOBr₄

EXERCISES

Problem 10.3

148

3 Ba

Sn

KAsF	6
------	---

\bigcap		-		
	~]		
	1			
	T		•	

CsSbF₆

148			
7.34	80 7.	3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148				
7.904 3	10 7	.9040	8.2610 90.00 90.00 120.0	0
Cs	1	3b	0. 0. 0.5	
SB	1	3a	0 0 0	
F	1	18f	0.06562 0.2158 0.1337	

Maximum distance ∆: 0.4657

F 1 18£ 0.2586 0.8262 0.0047 No pairing found for tolerance: 2

0. 0. 0.0

3a

3b

7.4180 90.00 90.00 120.00

Space-group symmetry: R-3 Euclidean normalizer: R-3m(-a,-b, 1/2c) Coset representatives: x,y,z; x,y,z+1/2; -y,-x,z; -y,-x,z+1/2;

Problem: EQUIVALENT STRUCTURE EQUISTRU DESCRIPTION

Equivalent Descriptions of Crystal Structures

Given a space group ITA number, the cell parameters (separated with spaces) and the atom positions, the program EQUIVSTRU transforms the corresponding structure with the elements of the euclidean normalizer of the space group. All the transformed structures are equivalent symmetry descriptions of the given initial structure. The atom positions are identified generating the Wyckoff sets.	148 7.3480 7.2740 90.00 90.00 120.00 3 3 0.33333 0.66666 0.16667 As 1 3a 0 0 F 1 18f 0.1292 0.2165 0.1381

SOLUTION

$KAsF_{6}$

148			
7.34	80 7.	3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148

7.90	40 7	7.9040	8.2610	90.00	90.00	120.00
Cs	1	3b	0. 0.	0.5		
SB	1	3a	0 0 0)		
F	1	18f	0.065	562 0.2	2158 0.	.1337

Maximum distance ∆: 0.4657

-y,-X,Z 148 7.9040 7.9040 8.2610 90.00 90.00 120.00 3 Cs 1 3b 0.0.0.5 SB 1 3a 0 0 0 F 1 18f 0.150180 0.215800 0.133700

Maximum distance A: 0.1600

 $BaSnF_6$

148			
7.42	79 7.	4279	7.4180 90.00 90.00 120.00
3			
Ba	1	3a	0. 0. 0.0
Sn	1	3b	0 0 0.5
F	1	18f	0.2586 0.8262 0.0047

KAsF₆

$CsSbF_6$

148			
7.34	80 7	.3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148	40 7.	9040	8.2610	90.00	90.00	120.00
Cs	1	3b	0. 0.	0.5		
SB	1	3a	0 0 0)		
P	1	18f	0.065	62 0.2	2158 0.	.1337

x,y,z+1/2

148				
7.42	79 7.	4279	7.4180 90.00 90.00 120.00)
3				
Ba	1	3a	0. 0. 0.0	
Sn	1	3b	0 0 0.5	
F	1	18f	0.2586 0.8262 0.0047	

No pairing found for tolerance: 2

148 7.4279 7.4279 7.4180 90.00 90.00 120.00 3b 0. 0. 0.5 Ba 1 0 0 0 Sn 1 3a 1 18f 0.159533 0.234267 0.161967

Maximum distance A: 0.2603

3

F

EXERCISES	Equivalent structure		
	descriptions		
Problem 10.4	Space group: P4/n		

Exercise 6.4. $P(C_6C_5)_4[MoNCl_4]$ is tetragonal, spac

Atom	Wyckoff	Coordinate	triplets	
	$\operatorname{position}$	x	y	z
Р	2b	0.25	0.75	0
Mo	2c	0.25	0.25	0.121
Ν	2c	0.25	0.25	-0.093
$\mathbf{C1}$	8g	0.362	0.760	0.141
C2	8g	0.437	0.836	0.117
Cl	8g	0.400	0.347	0.191

N(P4/n) = P4/mmm (a',b',1/2c)

a'=1/2(a-b), b'=1/2(a+b)

Problem: LOW-SYMMETRY STRUCTURES FOR A GIVEN CELLSUB CELL MULTIPLICATION

List of P-centred orthorhombic subgroups of Fd-3m(227) $i_k=2$

Ν	HM Symbol	ITA	index	t-index	k-index	More info
1	Pnma	062	12	6	2	show
2	Pmna	053	12	6	2	show
3	Pnna	052	12	6	2	show
4	Pmma	051	12	6	2	show
5	Pnn2	034	24	12	2	show
6	Pna2 ₁	033	24	12	2	show
7	Pmn2 ₁	031	24	12	2	show
8	Pnc2	030	24	12	2	show
9	Pma2	028	24	12	2	show
10	Pmc2 ₁	026	24	12	2	show
11	Pmm2	025	24	12	2	show
12	P212121	019	24	12	2	show
13	P222 ₁	017	24	12	2	show

Problem: PHASES WITH NO GROUP-SUBGROUP RELATIONS

the set of common subgroup types is finite if a maximum k-index is defined

Example: Monoclinic phase of the system PbZr_{1-x}Ti_xO₃

Phase diagram of PZT in the vicinity of its morphotropic phase boundary. C, R, and T represent cubic, rhombohedral and tetragonal regions. The diagonally-shaded M_A area represents the stability region of monoclinic phase.

(D.E. Cox et al. Condensed Matter, cond-mat/0102457, 2001.)

Symmetry arguments for the determination of the monoclinic phase ?

Symmetry Conditions

- The description of the intermediate state involves a common subgroup pair (H₁, H₂) of the symmetry groups of the two phases such G₁ > H₁ and G₂ > H₂.
- The compatibility between the occupied Wyckoff orbits in the intermediate state.

Example PZT: Wyckoff positions compatibility

Structural Conditions

- Minimum deformation strain in the transformation
- Minimum distance between the corresponding atoms in the initial structures described in the subgroup reference frame

FURTHER APPLICATIONS OF GROUP-NOT-SUBGROUP RELATIONS:

-PHASE TRANSITIONS WITH NO GROUP-SUBGROUP RELATIONS

-FERROELECTRIC PHASES WITH DIFFERENT ORIENTATIONS OF POLARIZATIONS

Problem: PHASES WITH NO GROUP-SUBGROUP RELATIONS

Fig. 7. Bärnighausen tree of the group-subgroup relationship [17] of the AlB₂-type and the distorted low-pressure (lp) and high-pressure (hp) modifications of CeAuGe (excerpt of Fig. 3. in Ref. [1]). The indices of the klassengleiche (k) and translationengleiche (t) transitions, as well as the unit cell transformations and origin shifts are given.

Structural phase transitions of CeAuGe at high pressure Brouskov et al. Z. Kristallogr. 220(2005) 122

Common subgroup candidates

	Common Subgroup H				Branch G ₁ > H			Branch G ₂ > H		
N	HM Symbol	P _H	z _h	ITA	i ₁	it ₁	ik ₁	i ₂	it ₂	ik ₂
1	Pna2 ₁	mm2	4	033	6	3	2	2	2	1
2	Pmn2 ₁	mm2	4	031	6	3	2	2	2	1
3	Pmc2 ₁	mm2	4	026	6	3	2	2	2	1
4	Pc	m	4	007	12	6	2	4	4	1
5	Pm	m	4	006	12	6	2	4	4	1
6	P2 ₁	2	4	004	12	6	2	4	4	1
7	<i>P</i> 1	1	4	001	24	12	2	8	8	1

ADDITIONAL

	Pro	blem IC	.2		SOLUTION					
Com	parison:	Ca struc	F ₂ ture	←		α-Σ stru	XOF ctures			
lat	tice	_'/_'−	A I A			LaOF	YOF	PuOF		
parameters		C/a -1.414		c'/a		1.427	1.389	1.413		
atomic coordinates										
Ca	F ₂	F: 1/2, 0, F: 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,	$\frac{1}{4}$ $\frac{1}{2}, \frac{1}{2}$	0 0	,1/2,3/2 ,0,0	$4 \\ 1/2, 1/$	2,0 0	,0,1/2		
α-Χ	$OF \frac{\lambda}{C}$	C: 2 c D: 2 b F: 2 a	$4mm \ ar{4}2m \ ar{4}2m \ ar{4}2m$	$\frac{1/2}{0,0}$	2, 0, u 0, 1/2 0, 0	$egin{array}{c} 0,1/2,ar{u}\ 1/2,1/2\ 1/2,1/2 \end{array}$	u = , 1/2 , 0	0.222		

Problem 10.2

SOLUTION

(ii) The new unit cell is tetragonal I

(iv) Volume 'new cell' to Volume 'old cell':

$$V_{new}/V_{old} = 1/2$$

Problem 10.2

SOLUTION

(iii) Transformation matrix and the corresponding augmented one

$$\boldsymbol{P} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbb{P} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{4} \\ -\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{4} \\ 0 & 0 & 1 & -\frac{1}{4} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, \quad \mathbb{P}^{-1} = \begin{pmatrix} 1 & -1 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{4} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

(iv) New description

Subgroups of space groups

G

it

İk

General subgroups H<G:

 $\begin{cases} T_{H} < T_{G} \\ P_{H} < P_{G} \end{cases}$

Theorem Hermann, 1929:

For each pair G>H, there exists a uniquely defined intermediate subgroup M, $G \ge M \ge H$, such that:

M is a t-subgroup of G H is a k-subgroup of M

Corollary

A maximal subgroup is either a t- or k-subgroup

Modul design of crystal symmetry relations

Scheme of the general formulation of the smallest step of symmetry reduction connecting two related crystal structures

U. Mueller, Gargnano 2008

Problem: Symmetry Relations between Crystal Structures Baernighausen Trees

