Group-Subgroup Relations of Space Groups

- I. Subgroups
- II.Wyckoff-position splittings
- III. Supergroups of space groups
- IV. Crystal-structure relationships

Subgroups: Some basic results (summary)

Subgroup H < G

 $\mathsf{I}.\mathsf{H=}\{\mathsf{e},\mathsf{h}_1,\mathsf{h}_2,...,\mathsf{h}_k\}\subset \mathsf{G}$

2. H satisfies the group axioms of G

Proper subgroups H < G, and
 trivial subgroup: {e}, G</pre>

Index of the subgroup H in G: [i]=|G|/|H| (order of G)/(order of H)

Maximal subgroup H of G NO subgroup Z exists such that: H < Z < G

Group-subgroup pair H < G

left coset decomposition $\begin{array}{l} G=H+g_{2}H+...+g_{m}H,\,g_{i}\not\in H,\\ m=index \,\,of\,\,H\,\,in\,\,G \end{array}$

right coset decomposition

 $\begin{array}{l} G=H+Hg_2+...+Hg_m,\,g_i \not\in H \\ m=index \,\,of \,\,H \,\,in \,\,G \end{array}$

Normal subgroups

$$Hg_{j} = g_{j}H$$
, for all $g_{j} = I$, ..., [i]

Conjugate subgroups

Conjugate subgroups Let $H_1 < G, H_2 < G$ then, $H_1 \sim H_2$, if $\exists g \in G: g^{-1}H_1g = H_2$ (i) Classes of conjugate subgroups: L(H) (ii) If $H_1 \sim H_2$, then $H_1 \cong H_2$ (iii) |L(H)| is a divisor of |G|/|H|

Normal subgroup

H ⊲ G, if $g^{-1}Hg = H$, for $\forall g ∈ G$

Subgroups of Space groups

Coset decomposition $G:T_G$

Factor group G/T_G

isomorphic to the point group P_G of G Point group $P_G = \{I, W_1, W_2, ..., W_i\}$

Subgroups of space groups

**Translationengleche subgroups H
$$\begin{cases} T_{H} = T_{G} \\ P_{H} < P_{G} \end{cases}$$**

Example: P2/m

Coset decomposition

EXERCISES

Problem 4.1

Construct the diagram of the *t*-subgroups of *P*4*mm* using the 'analogy' with the subgroup diagram of 4*mm*

International Tables for Crystallography (2006). Vol. A, Space group 99, pp. 382-383.

SOLUTION

Subgroup diagram of point group 4mm

Translationengleiche subgroups of space group P4mm

SOLUTION

Remark 1. Due to the convention to choose the basis vectors parallel to the rotation axes, C-centered cells appear although the translation lattice has not changed. If the retained twofold axes are diagonal, the conventional basis vectors $\mathbf{a'}, \mathbf{b'}, \mathbf{c'}$ of the subgroup are $\mathbf{a'} = \mathbf{a}-\mathbf{b}$, $\mathbf{b'} = \mathbf{a}+\mathbf{b}$, $\mathbf{c'} = \mathbf{c}$ with respect to the basis vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ of P4mm. Referred to $\mathbf{a'}, \mathbf{b'}, \mathbf{c'}$ the cell is C-centered

Change of basis vectors: **a**'=**a**-**b**, **b**'=**a**+**b**

P4mm

Pmm2

Cmm2

Subgroups of space groups

Klassengleiche subgroups H<G: non-isomorphic

$$T_H < T_G$$

 $P_H = P_G$

Example: C2 $T_i t_c$ $T_i 2 T_i t_c 2$ Ti (I,t_c) (2,0) (2,t_c) (1,0)Coset decomposition (I,t_1+t_c) (2, t₁) (2, t₁+t_c) (I,t_I) t_i=integer (I,t_2) (I,t_2+t_c) (2, t₂) (2, t₂+t_c) $t_c = 1/2, 1/2, 0$... $(2, t_{i}+t_{c})$ (|,t_i) $(2, t_i)$ $t_i + t_c$ $H_2=T_i\cup T_it_c 2$ $H_1 = T_i \cup T_i 2$ k-subgroups: P2 P21

Subgroups of space groups

<pre>Klassengleiche subgroups H<g:< pre=""></g:<></pre>
isomorphic

Example: PI *t*=u*a*+v*b*+w*c*

Coset decomposition $T_e = \{t(u=2n,v,w)\}$ $t_a(a,0,0)$

isomorphic k-subgroups: PI(2*a*,*b*,*c*)

Te $T_e t_a$ (I,0) (I,t_a) (I,t_1) (I,t_1+t_a) (I,t_2+t_a) (I,t_2) (I,t_{j}) $(I,t_{j}+t_{a})$ $H_1 = T_e$

 $\begin{cases} T_{H} < T_{G} \\ P_{H} = P_{G} \end{cases}$

Determine the k-subgroups of *Pnma*, No. 53 that are obtained by doubling of the *b* lattice parameter

Hint: split the cosets of Pnma relative to $T_{\rm G}$ into cosets with respect to $T_{\rm H}$

SOLUTION

Splitting of the translation subgroup T_G $T_G \xrightarrow{\text{splits}} T_H \cup T_H t_b$ $T_H = \{t(u,v=2n,w)\}$ $t_b=(0,b,0)$

Splitting of the generator cosets

generator $(2) \longrightarrow \bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}$ and $\bar{x} + \frac{1}{2}, \bar{y} + 1, z + \frac{1}{2}$ generator $(3) \longrightarrow \bar{x} + \frac{1}{2}, y, \bar{z} + \frac{1}{2}$ and $\bar{x} + \frac{1}{2}, y + 1, \bar{z} + \frac{1}{2}$ generator $(5) \longrightarrow \bar{x}, \bar{y}, \bar{z}$ and $\bar{x}, \bar{y} + 1, \bar{z}$

Referred to the basis $\mathbf{a}', \mathbf{b}', \mathbf{c}' = \mathbf{a}, 2\mathbf{b}, \mathbf{c}$, it is written as:

SOLUTION

k-subgroups for b'=2b

(2)'	(3)'	(5)'	\sim	Pmna (isomorphic)
(2)'	(3)'	(5)''	\sim	Pbnn(Pnna)
(2)'	(3)''	(5)'	\sim	Pbna (Pbcn)
(2)'	(3)''	(5)''	\sim	Pmnn (Pnnm)
(2)''	(3)'	(5)'	\sim	Pbnn(Pnna)
(2)''	(3)'	(5)''	\sim	Pmna (isomorphic)
(2)''	(3)''	(5)'	\sim	Pmnn (Pnnm)
(2)''	(3)''	(5)''	\sim	Pbna(Pbcn)

Example: (2)' (5)' $\longrightarrow a_z$ (2)'' (5)' $\longrightarrow n_z$

	Data on maximal subgroups of space groups in International Tables for Crystallography, Vol.A1 (ITA1)								
<i>R</i> 3	No. 146	<i>R</i> 3	C_3^4						
HEXAGONA	L AXES								
Generators so	elected (1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; $t(\frac{2}{3},\frac{1}{3})$	$,\frac{1}{3});$ (2)							
General posit	ion								
Multiplicity,		Coordinates							
Wyckoff letter,	(0.0.0)	$+ (\frac{2}{2}, \frac{1}{2}, \frac{1}{2}) + (\frac{1}{2}, \frac{2}{2}, \frac{2}{2}) +$							
Site symmetry	(0,0,0)	(3,3,3) (3,3,3)							
9 <i>b</i> 1	(1) x, y, z	(2) $\bar{y}, x - y, z$ (3) $\bar{x} + y, \bar{x}, z$							
I Maximal tra	unslationengleiche subgroups								
[3] R1 (1, P1)) 1+	a, b, 1/3(-a-2b+c)	:)						
II Maximal k	lassengleiche subgroups								
 Loss of 	of centring translations								
[3] P3 ₂ (145)	1; $2 + (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}); 3 + (\frac{2}{3}, \frac{1}{3}, \frac{1}{3})$		0,1/3,0						
$[3] P3_1 (144)$	1; $2 + (\frac{2}{3}, \frac{1}{3}, \frac{1}{3}); 3 + (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$		1/3,1/3,0						
[3] P3 (143)	1; 2; 3								
• Enlar	ged unit cell								
$[2] \mathbf{a}^{r} = -\mathbf{b}, \mathbf{r}$ R3 (146)	$\mathbf{b} = \mathbf{a} + \mathbf{b}, \ \mathbf{c} = 2\mathbf{c}$ (2)	$-{\bf b},{\bf a}+{\bf b},2{\bf c}$							
[4] $\mathbf{a}' = -2\mathbf{b}$,	$\mathbf{b}' = 2\mathbf{a} + 2\mathbf{b}$								
$\begin{cases} R3 (146) \\ R3 (146) \end{cases}$	(2) (2+(1,-1,0))	-2b, 2a + 2b, c -2b, 2a + 2b, c	1,0,0						

martes 23 de junio de 2009

ITAI maximal subgroup data

Maximal subgroups of P4mm (No. 99)

I Maximal translationengleiche subgroups

121 P411 (75, P4)	1: 2: 3:	4				
[2] P21m (35, Cmm2)	1; 2; 7;	8				$\mathbf{a} - \mathbf{b}, \mathbf{a} + \mathbf{b}, \mathbf{c}$
[2] P2m1 (25, Pmm2)	1; 2; 5;	6				1
II Maximal <i>klassengleiche</i>	subgroups					
• Enlarged unit cell						
[2] $c' = 2c$						
<i>P</i> 4 ₂ <i>mc</i> (105)	(2; 5; 3	$\left +\left(0,0,1 ight) ight angle$				a , b , 2 c
P4cc (103)	(2; 3; 5	(0,0,1)				a , b , 2 c
Remarks						
[i] HMS1 (No., H	MS2)	Sequence		matrix	\mathbf{shift}	
{ braces for		(I	P , p):	$O_H = C$	$D_G + p$	1) n

conjugate

subgroups

Subgroups of space groups

G

it

İk

General subgroups H<G:

 $\begin{cases} T_{H} < T_{G} \\ P_{H} < P_{G} \end{cases}$

Theorem Hermann, 1929:

For each pair G>H, there exists a uniquely defined intermediate subgroup M, $G \ge M \ge H$, such that:

M is a t-subgroup of G H is a k-subgroup of M

Corollary

A maximal subgroup is either a t- or k-subgroup Index [i] for a group-subgroup pair G>H

Hermann, 1929:Example: Pb3(VO4)2
$$[i]=[i_P].[i_L]$$
 $[i]=3.2=6$ \mathcal{G}
 \downarrow \mathcal{R}_{-3m}
 \downarrow \mathcal{M} $i_P=P_G/P_H$ \mathcal{M} $i_P=P_G/P_H=3$
 $\mathcal{C}2/m$ \mathcal{M} $i_L=Z_H/Z_G$ \mathcal{H} $\mathcal{P}2_1/c$

 \mathcal{M} is a t-subgroup of \mathcal{G}

 \mathcal{H} is a k-subgroup of \mathcal{M}

martes 23 de junio de 2009

Problem: CLASSIFICATION OF DOMAINS

HERMANN

At high temperatures, BiTiO₃ has the cubic perovskite structure, space group Pm-3m. Upon heating, it distorts to the space group P4mm. Can we expect twinned crystals of the low symmetry form? If so, how many kinds of domains?

Problem 4.4

SrTiO₃ has the cubic perovskite structure, space group Pm-3m. Upon cooling below 105K, the coordination octahedra are mutually rotated and the space group is reduced to 14/mcm; c is doubled and the unit cell is increasd by the factor of four. Can we expect twinned crystals of the low symmetry form? If so, how many kinds of domains?

Relations between Wyckoff positions

$$\mathcal{G} = Pmm2 > \mathcal{H} = Pm$$
, $[i] = 2$

SYMMETRY REDUCTION

Restrictions on the splitting schemes:

(i)
$$G > H: H$$
 a normal subgroup of G
 $R_i = R$ in $[i] = \sum R_i$

(ii)
$$G \ge Z \ge H$$
:
splitting $G \longrightarrow H \begin{cases} Splitting G \longrightarrow Z \\ Splitting Z \longrightarrow H \end{cases}$

Example: G>H, [i]=4

(i) one orbit: R=4

(ii) two orbits: $R_1 = R_2 = 2$ $R_1 = 3, R_2 = 1$

(iii) three orbits:
$$R_1 = R_2 = R_3 = R_3$$

(iv) four orbits: $R_1=R_2=R_3=R_4=I$ General procedure:

Given G, H < G, index [i] and (P,p) -transform (data)_G → (data)_H

I. Right-coset decomposition $G = H + Hg_2 + ... + Hg_k$

2. General-position orbit splitting $O_G(X_o)=O_H(X_{o,1})+O_H(X_{o,2})+...+O_H(X_{o,k})$

3. Special-position orbit splitting

(i) substitution of parameters: $O_H(X_{o,j}) \longrightarrow O_H(X_j)$

(ii) assignment of $O_H(X_j)$ to the WP of H

Wyckoff position splitting

Example:

- I. General-orbit splitting
 - $16k \ 1 \ (x, y, z) \to 16r \ 1 \ (x_1, y_1, z_1) \cup 16r \ 1 \ (x_2, y_2, z_2)$

Orbit I

Orbit 2

Wyckoff position splitting Example: 2. Special-orbit splitting: 2a 0,0,0 (i) Substitution of parameters general _____ special x,y,z 0.0.0 x,y,z -----> Orbit I: 0,0,0 Orbit 2: y,x+1/2,z+1/2 _____ 0,1/2,1/2 \rightarrow (ii) Assignment $0,0,0 \longrightarrow (2a)_{Cmmm}$ 0,1/2,1/2 → (2c)_{Cmmm}

Splitting: $(2a)_{P42/mnm} \longrightarrow (2a)_{Cmmm} + (2c)_{Cmmm}$

Wyckoff position splitting Example:

Example: WYCKSPLIT: P4₂/mnm>Cmmm, index 2

Wyckoff Positions Splitting

136 (P42/mnm) > 65 (Cmmm)

Splitting of Wyckoff position 4g

	Represent	Subgroup Wyckoff position		
No	group basis	subgroup basis	name[n]	representative
1	(x, -x, 0)	(x, 0, 0)		(x ₁ , 0, 0)
2	(-x, x, 0)	(-x, 0, 0)	4a.	(-x ₁ , 0, 0)
3	(x+1, -x, 0)	(x+1/2, 1/2, 0)	ופי	(x ₁ +1/2, 1/2, 0)
4	(-x+1, x, 0)	(-x+1/2, 1/2, 0)		(-x ₁ +1/2, 1/2, 0)
5	(x+1/2, x+1/2, 1/2)	(0, x+1/2, 1/2)		(0, y ₂ , 1/2)
6	(-x+1/2, -x+1/2, 1/2)	(0, -x+1/2, 1/2)	4 i.	(0, -y ₂ , 1/2)
7	(x+1/2, x-1/2, 1/2)	(1/2, x, 1/2)	147	(1/2, y ₂ +1/2, 1/2)
8	(-x+1/2, -x-1/2, 1/2)	(1/2, -x, 1/2)		(1/2, -y ₂ +1/2, 1/2)

Problem 5.1

Consider the group -subgroup pair P4mm>Cm [i]=4, a'=a-b, b'=a+b, c'=c

Determine the splitting schemes for WPs Ia, Ib, 2c, 4d

		Ę	grou	p P4mr	n					S	ubg	ro	up Cm		
Generators selected (1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; (2); (3); (5)					(3); (5)	Gen	era	tors se	elected	(1);	t(1,0,0); t(0,1)	,0); t(0,0,1)	; $t(\frac{1}{2},\frac{1}{2},0)$		
Po Mu Wy Site	sitio ltiplic ckoff sym	ns city, letter, metry		Coord	inates			Posi Multi Wyck Site s	tio iplic coff	ns eity, letter, metry			Coords $(0,0,0)+$	inates $(\frac{1}{2}, \frac{1}{2}, 0)+$	
8	8	1	(1) x, y, z (5) x, \bar{y}, z	(2) \bar{x}, \bar{y}, z (6) \bar{x}, y, z	(3) y (7) y	,x,z $,\overline{x},z$	(4) y, \bar{x}, z (8) y, x, z	4	b	1	(1) <i>x</i> ,	y,z	(2) x, \bar{y}, z		
4	f	. <i>m</i> .	$x, \frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$									
4	е	. <i>m</i> .	x,0,z	$\bar{x}, 0, z$	0, x, z	$0, \bar{x}, z$									
4	d	<i>m</i>	x, x, z	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z									
2	с	2mm.	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$				2 0	а	m	<i>x</i> ,0, <i>z</i>				
1	b	4 <i>m m</i>	$\frac{1}{2}, \frac{1}{2}, z$												
1	а	4 <i>m m</i>	0,0,z												

SOLUTION

General-position splitting

$\operatorname{coset} 1$	$\operatorname{coset} 2$	$\operatorname{coset} 3$	$\operatorname{coset} 4$
Cm	$Cm\left(ar{x},ar{y},z ight)$	$Cm\left(ar{y},ar{x},z ight)$	$Cm\left(y,x,z ight)$
x,y,z	$ar{x},ar{y},z$	$ar{y},ar{x},z$	y, x, z
x,ar y,z	$ar{x},y,z$	$ar{y}, x, z$	y,ar x,z
x + 1/2, y + 1/2, z	$ar{x}+1/2,ar{y}+1/2,z$	$ar{y}+1/2,ar{x}+1/2,z$	y + 1/2, x + 1/2, z
$x+1/2, ar{y}+1/2, z$	$ar{x}+1/2,y+1/2,z$	$ar{y}+1/2,x+1/2,z$	$y+1/2,ar{x}+1/2,z$

Special-position splittings

 $\begin{array}{l} 1a \; 4mm \; (0,0,z) \to 2a \; m \; (x,0,z). \\ 1b \; 4mm \; (0,1/2,z) \to 2a \; m \; (x,0,z), \\ 2c \; 2mm. \; (1/4,1/4,z) \to 4b \; 1 \; (x,y,z) \\ 4d \; ..m \; (0,x,z) \to 2a \; m \; (x,0,z) \cup 2a \; m \; (\bar{x},0,z) \cup 4b \; 1 \; (x,y,z). \end{array}$

Problem 5.1

Splitting of the Wyckoff positions: P4mm > Cm (by direct inspection)

Transformation of coordinates:

Cm

P4mm

Splitting schemes:

 $\begin{array}{rcl} \text{Ia} & 4\text{mm} (00\text{z}) & \longrightarrow & 2\text{a} & \text{m} (\text{x}0\text{z}) \\ \text{2c} & 2\text{mm} (1/20\text{z}) & \longrightarrow & 4\text{b} & 1 (\text{x}\text{y}\text{z}) \end{array}$

Data on Relations between Wyckoff Positions in International Tables for Crystallography, Vol.A1

 D_{4h}^{14}

 $P4_2/m2_1/n2/m$

No. 136

 $P4_2/mnm$

	Axes	Coordinates		Wyckoff positions						
			2a	2b	4 <i>c</i>	4d	4 <i>e</i>	4f		
				4g	8 <i>h</i>	8 <i>i</i>	8 <i>j</i>	16 <i>k</i>		
I Maximal tra	inslatione	engleiche subg	groups							
[2] <i>P</i> 4 <i>n</i> 2 (118)		$x + \frac{1}{2}, y, z + \frac{1}{4}$	2d	2c	4e	2a;2b	4h	4g		
				4f	$2 \times 4e$	8 <i>i</i>	8 <i>i</i>	$2 \times 8i$		
$[2] P\bar{4}2_1m(113)$		$x + \frac{1}{2}, y, z + \frac{1}{4}$	2c	2c	4d	2a;2b	$2 \times 2c$	4 <i>e</i>		
		2 1		4 <i>e</i>	$2 \times 4d$	8 <i>f</i>	$2 \times 4e$	$2 \times 8f$		
$[2] P4_2 nm(102)$			2a	2a	4b	4b	$2 \times 2a$	4 <i>c</i>		
_				4 <i>c</i>	$2 \times 4b$	8 <i>d</i>	$2 \times 4c$	$2 \times 8d$		
$[2] P4_22_12 (94)$			2a	2b	4d	4d	4 <i>c</i>	4 <i>e</i>		
				4f	$2 \times 4d$	8 <i>g</i>	8 <i>g</i>	$2 \times 8g$		
$[2] P4_2/m(84)$		$x + \frac{1}{2}, y, z$	2d	2c	2a;2b	2e;2f	4 <i>i</i>	4 <i>j</i>		
		2		4 <i>j</i>	4g;4h	$2 \times 4j$	8 <i>k</i>	$2 \times 8k$		
[2] <i>Pnnm</i> (58)			2a	2b	2c;2d	4f	4 <i>e</i>	4g		
				4g	$2 \times 4f$	$2 \times 4g$	8 <i>h</i>	$2 \times 8h$		
[2] <i>Cmmm</i> (65)	a-b,	$\frac{1}{2}(x-y),$	2a;2c	2b;2d	4 <i>e</i> ;4 <i>f</i>	8 <i>m</i>	4k;4l	4 <i>h</i> ;4 <i>i</i>		
	a+b, c	$\frac{\overline{1}}{2}(x+y), z;$		4 <i>g</i> ;4 <i>j</i>	$2 \times 8m$	8 <i>p</i> ;8 <i>q</i>	8n;80	2×16r		
		$+(rac{1}{2},rac{1}{2},0)$								

ITAI Space group P4₂/mnm (selection)

 D_{4h}^{14}

 $P4_2/m2_1/n2/m$

No. 136

 $P4_2/mnm$

	Axes	Coordinates			Wyckot	ff positions		
			2a	2b	4c	4d	4e	4f
				4 <i>g</i>	8 <i>h</i>	8 <i>i</i>	8 <i>j</i>	16 <i>k</i>
I Maximal tra	inslatione	engleiche subg	groups			-		
[2] <i>P</i> 4 <i>n</i> 2 (118)		$x + \frac{1}{2}, y, z + \frac{1}{4}$	2d	2c	4e	2a;2b	4h	4g
				4f	$2 \times 4e$	8 <i>i</i>	8 <i>i</i>	$2 \times 8i$
$[2] P\bar{4}2_1m(113)$		$x + \frac{1}{2}, y, z + \frac{1}{4}$	2c	2c	4d	2a;2b	$2 \times 2c$	4 <i>e</i>
				4 <i>e</i>	$2 \times 4d$	8 <i>f</i>	$2 \times 4e$	$2 \times 8f$
$[2] P4_2 nm(102)$			2a	2a	4 <i>b</i>	4 <i>b</i>	$2 \times 2a$	4c
				4 <i>c</i>	$2 \times 4b$	8 <i>d</i>	$2 \times 4c$	$2 \times 8d$
$[2] P4_{2}2_{1}2(94)$			2a	2 <i>b</i>	4d	4 <i>d</i>	4 <i>c</i>	4 <i>e</i>
				4 <i>f</i>	$2 \times 4d$	8 <i>g</i>	8 <i>g</i>	$2 \times 8g$
$[2] P4_2/m(84)$		$x + \frac{1}{2}, y, z$	2d	2c	2a;2b	2e;2f	4 <i>i</i>	4 <i>j</i>
		2		4 <i>j</i>	4g;4h	$2 \times 4j$	8 <i>k</i>	$2 \times 8k$
[2] <i>Pnnm</i> (58)			2a	2b	2c;2d	4f	4 <i>e</i>	4g
				4 <i>g</i>	$2 \times 4f$	$2 \times 4g$	8 <i>h</i>	$2 \times 8h$
[2] <i>Cmmm</i> (65)	a-b,	$\frac{1}{2}(x-y),$	2 <i>a</i> ;2 <i>c</i>	2b;2d	4 <i>e</i> ;4 <i>f</i>	8 <i>m</i>	4k;4l	4 <i>h</i> ;4 <i>i</i>
	a+b, c	$\frac{1}{2}(x+y), z;$		4 <i>g</i> ;4 <i>j</i>	$2 \times 8m$	8 <i>p</i> ;8 <i>q</i>	8n;80	$2 \times 16r$
		$+(\frac{1}{2},\frac{1}{2},0)$						

Example

Supergroups of the same type

 $\mathcal{H} = P222$ $\mathcal{G} = P422$ $P422 = P222 + (4|\omega)P222$

Normalizers of space groups

Normalizers N(G) : $g^{-1}{G}g = {G}$ ${ G}$ ${ G}$

> the symmetry of symmetry

Space group: Pmmn (a,b,c)

Euclidean normalizer: Pmmm (1/2a,1/2b,1/2c)

Normalizers for specialized metrics

Space group: Pmmn (a,b,c),

Normalizers

Euclidean normalizer for specialized metrics: P4/mm (1/2a,1/2b,1/2c)

Applications:

Equivalent point configurations Wyckoff sets Equivalent structure descriptions

Normalizers of space groups NORMALIZER

Cosets representatives of the Affine Normalizer with respect to the Space Group 99 (P4mm)

The Affine normalizer coincides with the Euclidean one.

Transformation of the Wyckoff Positions of Space Group 99 (P4mm) under Affine Normalizer N(G):

C	oset	Repre	sentat	tive		Transformed WP
x,y,z	[[[1 0 0	0 1 0	0] [0] [1] [0] 0] 0]	abcdefg
x+1/2,y+1/2,z	[[[1 0 0	0 1 0	0] [0] [1] [1/2] 1/2] 0]	bacdfeg
-x,-y,-z	[[[-1 0 0	0 -1 0	0] [0] [-1] [0] 0] 0]	abcdefg
-x+1/2,-y+1/2,-z	[[[-1 0 0	0 -1 0	0] [0] [-1] [1/2] 1/2] 0]	bacdfeg
x,y,z+t	[[[1 0 0	0 1 0	0] [0] [1] [0] 0] t]	abcdefg

Index: 4*(infinite)

Symmetry-equivalent Wyckoff positions

WYCKOFF SETS

Additional Generators for the Normalizer of the Group 221 (Pm-3m)

Additional generators of Euclidean normalizer (Im-3m) a,b,c

x+1/2,y+1/2,z+1/2	[1	0	0] [1/2]
	[0	1	0] [1/2]
	[0	0	1] [1/2]

Wyckoff Sets of Space Group 221 (Pm-3m)

NOTE: The program uses the default choice for the group settings.

Letter	Mult	SS	Rep.	Equivalent Positions
n	48	1	(x, y, z)	n
m	24	m	(x, x, z)	m
f	6	4m. m	(x, 1/2 , 1/2)	ef
е	6	4m. m	(x, 0, 0)	ef
d	3	4/mm. m	(1/2 , 0, 0)	cd
С	3	4/mm. m	(0, 1/2 , 1/2)	cd
b	1	m-3m	(1/2 , 1/2 , 1/2)	ab
а	1	m-3m	(0, 0, 0)	ab

Equivalent descriptions of crystal structures

Normalizer operation: x+1/2, y+1/2, z+1/2

$$1a (0,0,0)$$
 \longrightarrow
 $1b (1/2,1/2,1/2)$
 $1b (1/2,1/2,1/2)$
 \rightarrow
 $1a (0,0,0)$

Problem: EQUIVALENT DESCRIPTIONS EQUIVSTRU

Example:WOBr₄

Space Group:	
--------------	--

Euclidean Normalizer:

 $P^{1}4/mmm$

I4

Index: 4

$P4/mmm = I4 + (\bar{x}, \bar{y}, \bar{z})I4 + (y, x, z)I4 + (\bar{y}, \bar{x}, \bar{z})I4$

EQUIVALENT DESCRIPTIONS

Example:WOBr₄

Problem: Symmetry Relations between Crystal Structures Baernighausen Trees

U. Mueller, Gargnano 2008

Modul design of crystal symmetry relations

Scheme of the general formulation of the smallest step of symmetry reduction connecting two related crystal structures

U. Mueller, Gargnano 2008

Family tree of hettotypes of ReO3

Baernighausen Trees

Basic tools for structure symmetry relations

Baernighausen Trees

Group-Subgroup relations

Wyckoff-splitting schemes

Problem 6.1 Cristobalite phase transitions

At low temperatures, the space-group symmetry of cristobalite is given by the space group is P4₁2₁2 (92) with lattice parameters a=4.9586A, c=6.9074A. The four silicon atoms are located in Wyckoff position 4(a) ..2 with the coordinates x, x, 0; -x, -x, 1/2; 1/2-x, 1/2+x, 1/4; 1/2+x, 1/2-x, 3/4, x = 0.3028.

During the phase transition, the tetragonal structure is transformed into a cubic one with space group Fd-3m (227), a=7.147A. It is listed in the space-group tables with two different origins. If 'Origin choice 2' setting is used (with point symmetry -3m at the origin), then the silicon atoms occupy the position 8(a) -43m with the coordinates 1/8, 1/8, 1/8; 7/8, 3/8, 3/8 and those related by the face-centring translations.

Describe the structural distortion from the cubic to the tetragonal phase by the determination of (i) the displacements if the Si atoms in relative and absolute units, and (ii) the changes on the lattice parameters during the transition.

Ferroelastic phase transition $Pb_3(VO_4)_2$

Example: α -Cristobalite $\rightarrow \beta$ -Cristobalite

2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type: ***Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol***.

CC=44094	Details Bonds Pattern Structure Jmc						CC=44095	De	tails	Bonds	Patter	n Stru	cture	Jmol
Title	First-pr	inciples stu	udy of crysta	lline silica.			Title	First-princip	ples stu	udy of cry	stalline sili	ca.		
Authors	Feng Li	Feng Liu;Garofalini, H.;King-Smith, D.;Vanderbilt, D.						Feng Liu;G	arofaliı	ni, H.;King	g-Smith, D	.;Vanderb	oilt, D.	
Reference	Physical Review, Serie 3. B - Condensed Matter (1994) 49 , 12528-12534 Link XRef SCOPUS SCIRUS Google Also: Phase Transition (1992) 38 , 127-220						Reference	Physical Re 12528-125 Link XRef Also: Phase	view, 9 534 SCOP e Tran	Serie 3. B PUS SCIR sition (19	- Condens (US Googi 92) 38, 12	ed Matter l e 27-220	[.] (1994) 49 ,
Compound	Si O2 - [Cristobalite alpha] Silicon oxide - HT [AX2] [tP12] [b a] [TeO2(alpha)]						Compound	Si O2 - [Ci [<mark>h a</mark>] []	ristob	alite beta	a] Silicon o	oxide - HT	[AX2]	[cF24]
Cell	4.9586, 4.9586, 6.9074, 90., 90., 90. P41212 (92) V=169.84						Cell	7.147, 7.14 FD3-MS (2	47, 7.1 227)	147, 90., V=365.07	90., 90. 7			
Remarks	MIN =Cristobalite alpha : PDC =01-089-3434 : PDF =39-1425 : THE TYP =TeO2(alpha) : XDS At least one temperature factor missing in the paper. No R value given in the paper. Metastable up to 500 K (2nd ref. , Tomaszewski), above Fd3-m						Remarks	MIN =Cristo THE XDS At least one The coordin distances de coordinates	obalite e temp nates a lo not a	e beta : PD perature f are those agree with	DC =01-08 actor missi given in th those cal	9-3435 : ing in the e paper b culated du	PDF =4 paper. ut the a uring te	4-359 : atomic esting.The
Atom (site)) Oxid.	Dxid. x, y, z, B, Occupancy 0 4 0.3028 0.3028 0 0 1						No R value Metastable 1743 K	given above	in the paper of th	per. nd ref. , To	omaszews	ki), sta	ble above
01 (8	3b)	-2	0.2383	0.1093	0.1816	0 1								
	,						Atom (site)	Oxid.	:	x, y, z, B	, Occupan	су		
							Si1 (8a O1 (96) 4 ih) -:	2	0 0.125	0 0.081	0 0.169	0 1 0 0.	1667

Origin choice 2: Si 8a 1/8,1/8,1/8 7/8,3/8,3/8

Problem 6.1

SOLUTION

Symmetry break: Fd-3m \rightarrow P4₁2₁2 $a_t=1/2(a_c-b_c), b_t=1/2(a_c+b_c), c_t=c_c$ origin shift: (-1/4,0,0)

Problem 6.2

The coordinates of CaF₂ are: G=Fm-3mCa $4a \ m\bar{3}m \ 0,0,0 \ \frac{1}{2},\frac{1}{2},0 \ \frac{1}{2},0\frac{1}{2} \ 0,\frac{1}{2},\frac{1}{2}$ F $8c \ \bar{4}3m \ \frac{1}{4},\frac{1}{4},\frac{1}{4} \ \frac{1}{4},\frac{3}{4},\frac{3}{4} \ \frac{3}{4},\frac{1}{4},\frac{3}{4} \ \frac{3}{4},\frac$

(P,p)=1/2(a-b), 1/2(a+b), c; -1/4, 1/4, -1/4

EXERCISES

Problem 6.3

148

3 Ba

Sn

KAsF ₆	
-------------------	--

\wedge			
ſ	•		
1	1	~~~~	•
		• •	

CsSbF₆

148			
7.34	80 7.	3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148				
7.904	10 7.	9040	8.2610 90.00 90.00 120.00)
Cs	1	3b	0. 0. 0.5	
SB	1	3a	0 0 0	
F	1	18f	0.06562 0.2158 0.1337	

Maximum distance ∆: 0.4657

F 1 18£ 0.2586 0.8262 0.0047 No pairing found for tolerance: 2

0. 0. 0.0

3a

3b

7.4180 90.00 90.00 120.00

Space-group symmetry: R-3 Euclidean normalizer: R-3m(-a,-b, 1/2c) Coset representatives: x,y,z; x,y,z+1/2; -y,-x,z; -y,-x,z+1/2;

SOLUTION

$KAsF_{6}$

148			
7.34	80 7.	3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148

7.90	40 7	7.9040	8.2610	90.00	90.00	120.00
Cs	1	3b	0. 0.	0.5		
SB	1	3a	0 0 0)		
F	1	18f	0.065	562 0.2	2158 0.	.1337

Maximum distance ∆: 0.4657

-y,-X,Z 148 7.9040 7.9040 8.2610 90.00 90.00 120.00 3 Cs 1 3b 0.0.0.5 SB 1 3a 0 0 0 F 1 18f 0.150180 0.215800 0.133700

Maximum distance A: 0.1600

 $BaSnF_6$

148			
7.42	79 7.	4279	7.4180 90.00 90.00 120.00
3			
Ba	1	3a	0. 0. 0.0
Sn	1	3b	0 0 0.5
F	1	18f	0.2586 0.8262 0.0047

KAsF₆

$CsSbF_6$

148			
7.34	80 7	.3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148	40 7.	9040	8.2610	90.00	90.00	120.00
Cs	1	3b	0. 0.	0.5		
SB	1	3a	0 0 0)		
P	1	18f	0.065	62 0.2	2158 0.	.1337

x,y,z+1/2

148				
7.427	79 7.	4279	7.4180 90.00 90.00 120.0	0
3				
Ba	1	3a	0. 0. 0.0	
Sn	1	3b	0 0 0.5	
F	1	18f	0.2586 0.8262 0.0047	

No pairing found for tolerance: 2

148 7.4279 7.4279 7.4180 90.00 90.00 120.00 3b 0. 0. 0.5 Ba 1 0 0 0 Sn 1 3a 1 18f 0.159533 0.234267 0.161967

Maximum distance A: 0.2603

3

F

EXERCISES	Equivalent structure	
	descriptions	
Problem 6.4	Space group: P4/n	

Exercise 6.4. $P(C_6C_5)_4[MoNCl_4]$ is tetragonal, spac

Atom	Wyckoff	Coordinate	triplets	
	$\operatorname{position}$	x	y	z
Р	2b	0.25	0.75	0
Mo	2c	0.25	0.25	0.121
Ν	2c	0.25	0.25	-0.093
$\mathbf{C1}$	8g	0.362	0.760	0.141
C2	8g	0.437	0.836	0.117
Cl	8g	0.400	0.347	0.191

N(P4/n) = P4/mmm (a',b',1/2c)

a'=1/2(a-b), b'=1/2(a+b)

ADDITIONAL

Ferroelastic phase transition $Pb_3(VO_4)_2$

Problem: LATTICE CELLTRAN DISTORTION STRAIN

Example: Ferroelastic phase transition $Pb_3(VO_4)_2$

Proble	m: STRUCTURE TYPES	
KAsF ₆	CsSbF ₆	BaSnF ₆
148 7.3480 7.3480 7.2740 90.00 90.00 120.00 3 K 1 3b 0.3333 0.666666 0.16667 As 1 3a 0 0 0	148 7.9040 7.9040 8.2610 90.00 90.00 120.00 3 Cs 1 3b 0.0.0.5 SB 1 3a 000	148 7.4279 7.4279 7.4180 90.00 90.00 120.00 3 Ba 1 3a 0.0.0.0 Sn 1 3b 0 0 0.5
F 1 18f 0.1292 0.2165 0.1381	F 1 18f 0.06562 0.2158 0.1337 Maximum distance Δ: 0.4657	F 1 18f 0.2586 0.8262 0.0047
Space-group symr	netry: R-3	

Euclidean normalizer: R-3m(-a,-b, 1/2c)

Coset representatives: x,y,z; x,y,z+1/2; -y,-x,z; -y,-x,z+1/2;

$KAsF_{6}$

148			
7.34	80 7.	.3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148				
7.90	40 7	.9040	8.2610 90.00 90.00 120	.00
3				
Cs	1	3b	0. 0. 0.5	
SB	1	3a	0 0 0	
F	1	18f	0.06562 0.2158 0.133	7

148			
7.4279	7.4	4279	7.4180 90.00 90.00 120.00
3			
Ba	1	3a	0. 0. 0.0
Sn	1	3b	0 0 0.5
F	1	18f	0.2586 0.8262 0.0047

Maximum distance A: 0.4657

-y,-X,Z 148 7.9040 7.9040 8.2610 90.00 90.00 120.00 3 Cs 1 3b 0.0.0.5 SB 1 3a 0 0 0 F 1 18f 0.150180 0.215800 0.133700

Maximum distance A: 0.1600

KAsF₆

$CsSbF_6$

148			
7.34	80 7	.3480	7.2740 90.00 90.00 120.00
3			
K	1	3b	0.3333 0.66666 0.16667
As	1	3a	0 0 0
F	1	18f	0.1292 0.2165 0.1381

148	40 7.	9040	8.2610	90.00	90.00	120.00
Cs	1	3b	0. 0.	0.5		
SB	1	3a	0 0 0)		
P	1	18f	0.065	62 0.2	2158 0.	.1337

x,y,z+1/2

148				
7.42	79 7.	4279	7.4180 90.00 90.00 120.00)
3				
Ba	1	3a	0. 0. 0.0	
Sn	1	3b	0 0 0.5	
F	1	18f	0.2586 0.8262 0.0047	

No pairing found for tolerance: 2

148 7.4279 7.4279 7.4180 90.00 90.00 120.00 3b 0. 0. 0.5 Ba 1 0 0 0 Sn 1 3a 1 18f 0.159533 0.234267 0.161967

Maximum distance A: 0.2603

3

F