THE BILBAO CRYSTALLOGRAPHIC SERVER:

CRYSTALLOGRAPHIC DATABASES AND COMPUTER PROGRAMS

Mois I. Aroyo, J. M. Perez-Mato and Danel Orobengoa Universidad del Pais Vasco, Bilbao, Spain

martes 23 de junio de 2009

bilbao crystallographic server

[The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]

[Space Groups] [Layer Groups] [Rod Groups] [Frieze Groups] [Wyckoff Sets]

First announcement and	Space Groups Retrieval Tools					
pre-registration of a School in 2009 on	GENPOS	Generators and General Positions of Space Groups				
CrystallographyOnline:	WYCKPOS	Wyckoff Positions of Space Groups				
International Schoolon	HKLCOND	Reflection conditions of Space Groups				
the Use and Applications	MAXSUB	Maximal Subgroups of Space Groups				
oftheBilbao	SERIES	Series of Maximal Isomorphic Subgroups of Space Groups				
Crystallographic	WYCKSETS	Equivalent Sets of Wyckoff Positions				
this server Server	NORMALIZER	Normalizers of Space Groups				
Sections	KVEC	The k-vector types and Brillouin zones of Space Groups				
Retrieval Tools						
Group-Subgroup	Group - Subgroup Relatio	ons of Space Groups				
Representations						
Solid State	SUBGROUPGRAPH	Lattice of Maximal Subgroups				
Structure Utilities	HERMANN	Distribution of subgroups in conjugated classes				
Subperiodic	COSETS	Coset decomposition for a group-subgroup pair				
ICSDB	WYCKSPLIT	The splitting of the Wyckoff Positions				
	MINSUP	Minimal Supergroups of Space Groups				
Contact us	SUPERGROUPS	Supergroups of Space Groups				
About us	CELLSUB	List of subgroups for a given k-index.				
Links	CELLSUPER	List of supergroups for a given k-index.				
Publications	COMMONSUBS	Common Subgroups of Space Groups				
	COMMONSUPER	Common Supergroups of Two Space Groups				

martes 23 de junio de 2009

Contributing authors

Universidad del Pais Vasco, Bilbao

Eli Kroumova Svetoslav Ivantchev Cesar Capillas Danel Orobengoa Gemma de la Flor Gotzon Madariaga J. M. Perez-Mato Mois I. Aroyo

Contributing authors International Cooperation

Technische Universität, Karlsruhe, Germany Hans Wondratschek

Universität Bonn, Germany

Rudolf Hund

Sofia University, Bulgaria Assen Kirov

Brigham Young University, Provo, USA

Dorian Hatch Harold Stokes

Institut Laue-Langevin, Grenoble, France

Juan Rodriguez-Carvajal

Crystallographic Databases

International Tables for Crystallography

Space-group Data

International Tables for Crystallography

Volume A: Space-group symmetry

generators Wyckoff positions Wyckoff sets normalizers Volume A1: Symmetry Relations between space groups maximal subgroups of index 2,3 and 4 series of isomorphic subgroups

Retrieval tools

ITA space group P4mm

No. 99

P4mm

Positions Multiplicity, Wyckoff letter,		Coor	dinates			Reflection condition	S
Site symmetry						General:	
8 g 1	(1) x, y, z (5) x, \bar{y}, z	(2) \bar{x}, \bar{y}, z (6) \bar{x}, y, z	(3) ȳ, (7) ȳ,		(4) y, \bar{x}, z (8) y, x, z	no conditions	
						Special:	
4 f .m.	$x, \frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$		no extra conditions	
4 e .m.	<i>x</i> ,0, <i>z</i>	$\bar{x}, 0, z$	0, <i>x</i> , <i>z</i>	$0, \bar{x}, z$		no extra conditions	
4 <i>dm</i>	<i>x</i> , <i>x</i> , <i>z</i>	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z		no extra conditions	
2 c 2 m m.	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$				hkl : h+k=2n	
1 b 4 m m	$\frac{1}{2}, \frac{1}{2}, Z$					no extra conditions	
1 a 4 m m	0, 0, z					no extra conditions	
Symmetry of s Along $\begin{bmatrix} 001 \end{bmatrix} p4r$ $\mathbf{a}' = \mathbf{a} \qquad \mathbf{b}' = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ Origin at $0, 0, z$	nm	-	Along [100] $\mathbf{a}' = \mathbf{b}$ \mathbf{k} Origin at <i>x</i> ,0	$\mathbf{o}' = \mathbf{c}$		Along [110] $p \ 1 m \ 1$ $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ $\mathbf{b}' = \mathbf{c}$ Origin at $x, x, 0$	
Maximal non-	isomorphic s	ubgroups					
	(P4, 75) a (Cmm2, 35) a (Pmm2, 25)						MAXSUB
						; $[2]C4md(\mathbf{a}' = 2\mathbf{a}, \mathbf{b}' = 2\mathbf{b})(P4bm, 100);$ $2\mathbf{b}, \mathbf{c}' = 2\mathbf{c})(I4mm, 107)$	
Maximal isom IIc [2]P4mm	norphic subgr $n(\mathbf{c}' = 2\mathbf{c})(99);$	_		2 b)(<i>P</i> 4 <i>m</i>)	n, 99)	SERIES	
IIc [2]P4mm Minimal non-	$n(\mathbf{c}' = 2\mathbf{c})(99);$ isomorphic su	[2] <i>C</i> 4 <i>mm</i> (a '	$=2\mathbf{a},\mathbf{b}'=2$		n, 99)		

🖕 🖕 🛃 🙆

line http://lcpydb.lc.ehu.es/cryst/get_gen.html

• O (G-

 \bigcirc

Help

Bilbao Crystallographic Server → Generators/General Positions

Generators and General Positions

Generators/General Positions

PRACTICAL EXERCISES

Bilbao Crystallographic Server www.cryst.ehu.es

Bilbao Crystallographic Server - mirror site <u>http://158.227.0.68</u>/

MATRIX-COLUMN PRESENTATION OF SYMMETRY OPERATIONS

Crystallographic symmetry operations

Symmetry operations of an object

The isometries which map the object onto itself are called *symmetry operations of this object*. The *symmetry* of the object is the set of all its symmetry operations.

Crystallographic symmetry operations

If the object is a crystal pattern, representing a real crystal, its symmetry operations are called *crystallographic symmetry operations*.

The equilateral triangle allows six symmetry operations: rotations by 120 and 240 around its centre, reflections through the three thick lines intersecting the centre, and the identity operation.

Description of isometries

coordinate system:

$$\{O, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$$

isometry: point
$$X \longrightarrow \text{point } \tilde{X}$$

$$egin{array}{rcl} ilde{x} &=& W_{11}\,x + W_{12}\,y + W_{13}\,z + w_1 \ ilde{y} &=& W_{21}\,x + W_{22}\,y + W_{23}\,z + w_2 \ ilde{z} &=& W_{31}\,x + W_{32}\,y + W_{33}\,z + w_3 \end{array}$$

Matrix formalism

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

$$\begin{array}{c} \text{linear/matrix} \\ \text{part} \end{array} \qquad \begin{array}{c} \text{translation} \\ \text{column part} \end{array}$$

$$ilde{m{x}} = m{W} \, m{x} + m{w}$$

 $ilde{m{x}} = (m{W}, \, m{w}) \, m{x}$ or $m{ ilde{m{x}}} = \{m{W} \, | \, m{w}\} \, m{x}$
matrix-column Seitz symbol
pair

martes 23 de junio de 2009

Matrix formalism

combination of isometries:

$$(\boldsymbol{W}_2, \, \boldsymbol{w}_2) \, (\boldsymbol{W}_1, \, \boldsymbol{w}_1) = (\, \boldsymbol{W}_2 \, \, \boldsymbol{W}_1, \, \, \boldsymbol{W}_2 \, \boldsymbol{w}_1 + \boldsymbol{w}_2)$$

inverse isometries:

$$(\boldsymbol{W}, \boldsymbol{w})^{-1} = (\boldsymbol{W}^{-1}, -\boldsymbol{W}^{-1} \boldsymbol{w})$$

Matrix formalism: 4x4 matrices

4x4 matrices: general formulae

Construct the matrix column pair (W,w) (and the corresponding (4x4) matrix) of the following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2

GEOMETRIC MEANING OF MATRIX-COLUMN PAIRS (W,w)

Crystallographic symmetry operations

	Types of	isometries		not handedness
roto	o-inversion:	centre of re roto-i	oto-invers nversion a	
1i	nversion:	centre of in	nversion fi	xed
	reflection:	plane fixed reflection		ane
glide	reflection:	no fixed po glide plane		glide vector

Geometric meaning of (W, w) W information

(a) type of isometry

	$\det(\boldsymbol{W}) = +1$				$\det(\mathbf{W}) = -1$					
$\operatorname{tr}(\boldsymbol{W})$	3	2	1	0	-1	-3	-2	-1	0	1
type	1	6	4	3	2	ī	$\overline{6}$	$\overline{4}$	$\overline{3}$	$ar{2}=m$
order	1	6	4	3	2	2	6	4	6	2

rotation angle

 $\cos\varphi = (\pm \mathrm{tr}(\mathbf{W}) - 1)/2$

Geometric meaning of
$$(W, w)$$

 W information

(b) axis or normal direction $oldsymbol{u}$: $oldsymbol{W}oldsymbol{u}=\pmoldsymbol{u}$

(bl) rotations:

$$oldsymbol{Y}(oldsymbol{W})$$
 = $oldsymbol{W}^{k-1}$ + $oldsymbol{W}^{k-2}$ + \ldots + $oldsymbol{W}$ + $oldsymbol{I}$
(b2) roto-inversions: $oldsymbol{Y}(-oldsymbol{W})$

reflections: $oldsymbol{Y}(-oldsymbol{W})=-oldsymbol{W}+oldsymbol{I}$

Geometric meaning of (W, w)W information

(c) sense of rotation:

for rotations or rotoinversions with k>2

$\det(Z): \boldsymbol{Z} = [\boldsymbol{u}|\boldsymbol{x}|(\det \boldsymbol{W}) \boldsymbol{W}\boldsymbol{x}]$

 \boldsymbol{x} non-parallel to \boldsymbol{u}

(A) intrinsic translation part :

glide or screw t/k

(AI) screw rotations:

$$\boldsymbol{t}/k = rac{1}{k} \boldsymbol{Y} \boldsymbol{w}, ext{where } \boldsymbol{W}^k = \boldsymbol{I}$$

(A2) glide reflections:

$$t/k = \frac{1}{2}(W + I)$$

Geometric meaning of
$$(W, w)$$

 w -information

(B) location (fixed points x_F):

(BI)
$$t/k = 0$$
: $(W, w) x_F = x_F$

$$(\boldsymbol{W}, \boldsymbol{w}_{lp}) \boldsymbol{x}_F = \boldsymbol{x}_F$$

 $\boldsymbol{w}_{lp} = \boldsymbol{w} - \boldsymbol{t}/k$

EXERCISES

Construct the matrix-column pairs (W,w) (and the corresponding (4x4) matrices) of the following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2

Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b, *i.e.* determine (i) the type, (ii) glide (screw) components, (iii) fixed points, (iv) nature and location of the symmetry elements.

SOLUTION

(i)

$$\mathbb{W}(1) = \begin{pmatrix} 1 0 0 & 0 \\ 0 1 0 & 0 \\ 0 0 1 & 0 \\ 0 0 0 & 1 \end{pmatrix}, \quad \mathbb{W}(2) = \begin{pmatrix} \overline{1} 0 0 & 0 \\ 0 1 0 & \frac{1}{2} \\ 0 0 \overline{1} & \frac{1}{2} \\ 0 0 0 & 1 \end{pmatrix}, \quad \mathbb{W}(3) = \begin{pmatrix} \overline{1} 0 0 & 0 \\ 0 \overline{1} 0 & 0 \\ 0 \overline{1} 0 & 0 \\ 0 0 \overline{1} & 0 \\ 0 0 0 & 1 \end{pmatrix}, \quad \mathbb{W}(4) = \begin{pmatrix} 1 0 0 & 0 \\ 0 \overline{1} 0 & \frac{1}{2} \\ 0 0 1 & \frac{1}{2} \\ 0 0 1 & \frac{1}{2} \\ 0 0 0 & 1 \end{pmatrix}$$

International Tables for Crystallography (2006). Vol. A, Space group 14, pp. 184–191.

$$P2_{1}/c$$
 C_{2h}^{5} $2/m$ I
No. 14 $P12_{1}/c1$ Patterson sy:

UNIQUE AXIS b, CELL CHOICE 1

martes 23 de junio de 2009

4

EXERCISES

Problem 1.2

Consider the matrices

$$(\boldsymbol{A}, \boldsymbol{a}) = \begin{pmatrix} 010\\100\\00\overline{1} \end{pmatrix}, \begin{pmatrix} 1/2\\1/2\\1/2 \end{pmatrix} \text{ and } (\boldsymbol{B}, \boldsymbol{b}) = \begin{pmatrix} 010\\001\\100 \end{pmatrix}, \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

(i) What is the matrix-column pair resulting from

(B, b) (A, a) = (C, c), and (A, a) (B, b) = (D, d) ?

(ii) What is (A, a)⁻¹, (B, b)⁻¹, (C, c)⁻¹ and (D, d)⁻¹ ?
(iii) What is (B, b)⁻¹ (A, a)⁻¹ ?

(iv) The geometrical meaning of (A, a), (B, b), (C, c) and (D, d)

SOLUTION

(i)
$$(B, b)(A, a)$$
: $BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \overline{1} \\ 0 & 1 & 0 \end{pmatrix}$, $Ba = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$,
 $Ba + b = Ba$ for $b = o$.

Therefore,
$$(\boldsymbol{B}\boldsymbol{A}, \boldsymbol{B}\boldsymbol{a} + \boldsymbol{b}) = (\boldsymbol{C}, \boldsymbol{c}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \overline{1} \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}.$$

٠

Analogously one calculates

$$(\boldsymbol{A}, \boldsymbol{a}) (\boldsymbol{B}, \boldsymbol{b}) = (\boldsymbol{D}, \boldsymbol{d}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ \overline{1} & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$

SOLUTION

(ii)
$$(\boldsymbol{A}, \boldsymbol{a})^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}, \begin{pmatrix} -1/2 \\ -1/2 \\ 1/2 \end{pmatrix}; (\boldsymbol{B}, \boldsymbol{b})^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

 $(\boldsymbol{C}, \boldsymbol{c})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & \overline{1} & 0 \end{pmatrix}, \begin{pmatrix} -1/2 \\ -1/2 \\ 1/2 \end{pmatrix}; (\boldsymbol{D}, \boldsymbol{d})^{-1} = \begin{pmatrix} 0 & 0 & \overline{1} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \end{pmatrix}.$
(iii) $(\boldsymbol{B}, \boldsymbol{b})^{-1} (\boldsymbol{A}, \boldsymbol{a})^{-1} = \begin{pmatrix} 0 & 0 & \overline{1} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \end{pmatrix} = (\boldsymbol{D}, \boldsymbol{d})^{-1} \neq (\boldsymbol{C}, \boldsymbol{c})^{-1}.$
Note, that $(\boldsymbol{B}, \boldsymbol{b})^{-1} (\boldsymbol{A}, \boldsymbol{a})^{-1} = [(\boldsymbol{A}, \boldsymbol{a}) (\boldsymbol{B}, \boldsymbol{b})]^{-1} = (\boldsymbol{D}, \boldsymbol{d})^{-1}.$

SOLUTION

From the matrix parts the 'types' of the operations are determined by the determinants and traces:

	A	B	С	D
det	+1	+1	+1	+1
\mathbf{tr}	ī	0	1	1
type	2	3	4	4

All the matrices are those of rotations. The directions [uvw] of the rotation axes are determined by applying either equation 1.4.11 or calculating the corresponding matrices Y(W):

A	B	С	D
u = v	u = v	u = u	u = w
v = u	v = w	v = -w	v = v
w = -w	w = u	w = v	w = -u
[110]	[111]	[100]	[010]

SOLUTION

The matrix-column pair (A, a): translation part

$$\begin{split} &\frac{1}{2} \Biggl[\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Biggr] \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \end{split}$$
 is the screw part of $(\boldsymbol{A}, \boldsymbol{a})$.
The reduced operation is $(\boldsymbol{A}, \boldsymbol{a}_{lp}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1/2 \\ 1/2 \end{pmatrix}$.

ITA description:

2(1/2,1/2,0) x,x,1/4

(A, a): screw rotation 2_1

screw rotation axis x, x, 1/4

3⁻ x,x,x

SOLUTION

The matrix-column pair (C, c): translation part

$$\begin{aligned} \frac{\mathbf{t}}{4} &= \frac{1}{4} \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & \overline{1} & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & \overline{1} & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \overline{1} \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \\ &= \frac{1}{4} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \\ 0 \end{pmatrix}. \end{aligned}$$

(*C*, *c*): screw rotation 4₂ screw rotation axis x,0,1/2 ITA description:

4⁺(1/2,0,0) x,0,1/2

Problem: Geometric Interpretation of (W,w) OPERATION

SYMMETRY

Geometric Interpretation of Matrix Column Representation of Symmetry Operation

ymmetry Operation	Please, introduce the cry		• • • • • • • • • • • • • • • • • • •		
This program calculates the geometric nterpretation of matrix column representation of symmetry operation for a given crystal system or space group. npunt:	Or please, enter the sequential number of group as given in the International Tables for Crystallography, Vol.				
) The crystal system or the space group number.	Matrix column representa of symmetry operation	ation			
 The matrix column representation of symmetry operation. 					
fuely went to work on a nen conventional		Rotational part			Traslation
f you want to work on a non conventional setting click on Non conventional setting ,		1	0	0	0
his will show you a form where you have	In matrix form	0	1	0	0
elating the conventional setting of the		0	0	1	0
group you have chosen with the non conventional one you are interested in.					
Output:	Standard/Default Setting)	Non Con	ventional Setting	ITA Settings

We obtain the symmetry operation.

Problem 1.3

I. Solve the problems I.I and I.2 applying the program SYMMETRY OPERATION

Problem 1.4

- Characterize geometrically the matrix-column pairs listed under General position of the space group P4mm in ITA. Compare the results with the data listed under Symmetry operations.
- 2. Consider the diagram of the symmetry elements of P4mm. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram.

International Tables for Crystallography (2006). Vol. A, Space group 99, pp. 382-383.

GENERATION OF SPACE GROUPS

Generators

Set of generators of a group is a set of spacegroup elements such that each element of the group can be obtained as an ordered product of the generators

$$\mathsf{W} = \mathsf{G}_{h}^{k_{h}} * \mathsf{G}_{h-1}^{k_{h-1}} * \dots * \mathsf{G}_{3}^{k_{3}} * \mathsf{G}_{2}^{k_{2}} * \mathsf{G}_{1}^{k_{2}}$$

 $G_{\rm I}$ - identity

G₂, G₃, G₄ - primitive translations

G₅, G₆ - centring translations

G₇, G₈, ... - generate the rest of elements

Generation of trigonal and hexagonal groups

3	3
3	3, 1
321	3, 2110
(rhombohedral coordinates	$3_{111}, 2_{10\bar{1}}$
312	$3, 2_{1\bar{1}0}$
3 <i>m</i> 1	$3, m_{110}$
(rhombohedral coordinates	$(3_{111}, m_{10\bar{1}})$
31 <i>m</i>	$3, m_{1\bar{1}0}$
$\bar{3}m1$	$3, 2_{110}, \bar{1}$
(rhombohedral coordinates	$3_{111}, 2_{10\bar{1}}, \bar{1}$
31 <i>m</i>	$3, 2_{1\bar{1}0}, \bar{1}$
6	3, 2 _z
<u>6</u>	$3, m_z$
6/m	$3, 2_z, \bar{1}$
622	$3, 2_z, 2_{110}$
6mm	$3, 2_z, m_{110}$
<u>6</u> m2	$3, m_z, m_{110}$
<u>6</u> 2 <i>m</i>	$3, m_z, 2_{110}$
6/mmm	$3, 2_z, 2_{110}, \overline{1}$

Generation of orthorhombic and tetragonal groups

Hermann–Mauguin symbol of crystal class	Generators G _i (sequence left to right)
1	1
1	1
2	2
m	m
2/m	2, 1
222	$2_z, 2_y$
mm2	$2_z, m_y$
mmm	$ \begin{array}{c} 2_{z}, 2_{y} \\ 2_{z}, m_{y} \\ 2_{z}, 2_{y}, \overline{1} \end{array} $
4	2 _z ,4
4	$\begin{vmatrix} 2_z, 4\\ 2_z, \bar{4} \end{vmatrix}$
4/m	$2_z, 4, \bar{1}$
422	$2_z, 4, 2_y$
4 <i>mm</i>	$2_z, 4, m_y$
4 2 <i>m</i>	$2_z, \bar{4}, 2_y$
$\overline{4}m2$	$2_z, \bar{4}, m_y$
4/mmm	$2_z, 4, 2_y, \overline{1}$

Generate the space group P4mm using the selected generators

Compare the results of your calculation with the coordinate triplets listed under General position of the ITA data of P4mm

Compare the results of your calculations with the BCS data using the retrieval tools GENPOS (generators and general positions) International Tables for Crystallography (2006). Vol. A, Space group 99, pp. 382-383.

SITE-SYMMETRY GENERAL POSITION SPECIAL WYCKOFF POSITIONS

Calculation of the Site-symmetry groups

Group P-I	Mu Wy	Positions Multiplicity, Wyckoff letter, Site symmetry			Coordinates					
	2	i	1	(1) <i>x</i> , y	v,z	(2) $\bar{x}, \bar{y}, \bar{z}$				
	1	h	ī	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$						
	1	g	ī	$0, rac{1}{2}, rac{1}{2}$						
	1	f	ī	$(\frac{1}{2},0,\frac{1}{2})$	>					
S={(W,w)	, (\	N,v	w)>	$X_{o} = X_{c}$	_}					
	\dashv	1/2 0 1/2] =	- 0	f={(Ⅰ Sf <mark>≃</mark> {Ⅰ	,0), (-1,101)X _f , -1}	$= X_{f}$			

isomorphic

Problem 1.6

Consider the special Wyckoff positions of the the space group P4mm.

Determine the site-symmetry groups of Wyckoff positions Ia and 2b. Compare the results with the listed ITA data

The coordinate triplets (x, 1/2,z) and (1/2,x,z), belong to Wyckoff position 4f. Compare their site-symmetry groups.

CONTINUED

Space group P4mm

Coordinates

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)

Positions

Multiplicity, Wyckoff letter, Site symmetry

8	g	1	(1) x, y, z (5) x, \bar{y}, z	(2) \bar{x}, \bar{y}, z (6) \bar{x}, y, z	(3) $\bar{y}_{,}$ (7) $\bar{y}_{,}$		(4) y, \bar{x}, z (8) y, x, z
4	f	. <i>m</i> .	$x, \frac{1}{2}, z$	$ar{x},rac{1}{2},z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$	
4	е	. <i>m</i> .	<i>x</i> ,0, <i>z</i>	$\bar{x}, 0, z$	0, x, z	$0, \bar{x}, z$	
4	d	<i>m</i>	x, x, z	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z	
2	с	2mm.	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$			
1	b	4 <i>m m</i>	$\frac{1}{2}, \frac{1}{2}, Z$				

martes 23 de junio de 2009

EXERCISES

Problem 1.7

Consider the data given in ITA for the space group $P4_2/mbc$, No. 135:

Generate the representatives of the General Position from the generators of the group. Starting from $\mathcal{T}_{\mathcal{G}}$, construct the chain of normal subgroups along which the space group $P4_2/mbc$ is step-wise generated;

Determine the site-symmetry groups of the following *Wyckoff positions*: 4(a); 4(c); 4(d); 8(g). Construct the corresponding oriented site-symmetry symbols and compare them with those listed in *ITA*;

Characterize geometrically the isometries (3), (8), (12), (15) and (16) as listed under *General Position*. Compare the results with the corresponding geometric descriptions listed under *Symmetry operations* in *ITA*.

International Tables for Crystallography (2006). Vol. A, Space group 135, pp. 466-467.

Origin at centre (2/m) at $4_2/m \ln n$

Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le \frac{1}{4}$

Symmetry operations

(1) 1	(2) 2 $0, 0, z$	(3) $4^+(0,0,\frac{1}{2}) 0,0,z$	(4) $4^{-}(0,0,\frac{1}{2})$ 0,0,z
(5) $2(0,\frac{1}{2},0)$ $\frac{1}{4},y,0$	(6) $2(\frac{1}{2},0,0) x,\frac{1}{4},0$	(7) $2(\frac{1}{2},\frac{1}{2},0)$ x,x, $\frac{1}{4}$	(8) 2 $x, \bar{x} + \frac{1}{2}, \frac{1}{4}$
(9) 1 0,0,0	(10) m x, y, 0	(11) $\bar{4}^+$ 0,0,z; 0,0, $\frac{1}{4}$	(12) $\bar{4}^-$ 0,0,z; 0,0, $\frac{1}{4}$
(13) $a x, \frac{1}{4}, z$	(14) $b = \frac{1}{4}, y, z$	(15) $c x + \frac{1}{2}, \bar{x}, z$	(16) $n(\frac{1}{2},\frac{1}{2},\frac{1}{2}) x,x,z$

martes 23 de junio de 2009

No. 135

 $P4_2/mbc$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Mult	tiplic koff			Coordina	ites			Reflection conditions
Site	symr	netry						General:
16	i	(5) \bar{x} - (9) \bar{x} ,	$(+\frac{1}{2},y+\frac{1}{2},\bar{z})$ (\bar{y},\bar{z})	(6) $x + \frac{1}{2}, \bar{y} - (10) x, y, \bar{z}$	$+\frac{1}{2}, \bar{z}$ (7) (11)	$ \begin{array}{l} y + \frac{1}{2}, x + \frac{1}{2}, \bar{z} + \frac{1}{2} \\ y, \bar{x}, \bar{z} + \frac{1}{2} \end{array} $	(4) $y, \bar{x}, z + \frac{1}{2}$ (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (12) $\bar{y}, x, \bar{z} + \frac{1}{2}$ (16) $y + \frac{1}{2}, x + \frac{1}{2}, z + \frac{1}{2}$	0kl : k = 2n hhl : l = 2n 00l : l = 2n h00 : h = 2n
								Special: as above, plus
8	h	<i>m</i>	x,y,0 $\bar{x}+rac{1}{2},y+$	$\frac{\bar{x},\bar{y},\bar{y}}{x+z}$	$0^{\frac{1}{2}}, \bar{y} + \frac{1}{2}, 0$	$ar{y},x,rac{1}{2}\y+rac{1}{2},x+rac{1}{2},rac{1}{2}$	$y,ar{x},rac{1}{2}\ ar{y}+rac{1}{2},ar{x}+rac{1}{2},rac{1}{2}$	no extra conditions
8	g	2	$x, x+rac{1}{2}, rac{1}{4}\ ar{x}, ar{x}+rac{1}{2}, rac{3}{4}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{1}{4}$ $\bar{x}+$ $\frac{3}{4}$ $x+$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ar{x}, rac{3}{4}$ $x, rac{1}{4}$	hkl : $l = 2n$
8	f	2	$0, \frac{1}{2}, z$ $0, \frac{1}{2}, \overline{z}$	$\frac{1}{2}, 0, z + \frac{1}{2}$ $\frac{1}{2}, 0, \overline{z} + \frac{1}{2}$	$\frac{1}{2}, 0, \bar{z}$ $\frac{1}{2}, 0, z$	$\begin{array}{c} 0, \frac{1}{2}, \bar{z} + \frac{1}{2} \\ 0, \frac{1}{2}, z + \frac{1}{2} \end{array}$		hkl : $h+k, l=2n$
8	е	2	0,0,z $0,0,\bar{z}$	$0,0,z+rac{1}{2}\ 0,0,ar{z}+rac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \overline{z}$ $\frac{1}{2}, \frac{1}{2}, z$	$\frac{1}{2}, \frac{1}{2}, \overline{z} + \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}, z + \frac{1}{2}$		hkl : $h+k, l=2n$
4	d	2.22	$0, \frac{1}{2}, \frac{1}{4}$	$\frac{1}{2}, 0, \frac{3}{4}$	$0, \frac{1}{2}, \frac{3}{4}$	$\frac{1}{2},0,\frac{1}{4}$		hkl : $h+k, l=2n$
4	с	2/m	$0, \frac{1}{2}, 0$	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{2}, 0, 0$	$0, \frac{1}{2}, \frac{1}{2}$		hkl : $h+k, l=2n$
4	b	ā	$0, 0, \frac{1}{4}$	$0, 0, \frac{3}{4}$	$\frac{1}{2}, \frac{1}{2}, \frac{3}{4}$	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$		hkl : $h+k, l=2n$
4	а	2/m	0,0,0	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$		hkl : $h+k, l=2n$

CO-ORDINATE TRANSFORMATIONS IN CRYSTALLOGRAPHY

General affine transformation

a change of basis from (a, b) to (a', b')

a shift of origin from O to O' by a shift vector \boldsymbol{p} with components p_1 and p_2

Change in the coordinates of the point X from (x, y) to (x',y')

Transformation of symmetry operations (W,w):

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

3-dimensional space

$$(\mathbf{a}, \mathbf{b}, \mathbf{c})$$
, origin O: point $X(x, y, z)$
 $(\mathbf{P}, \mathbf{p}) \downarrow$
 $(\mathbf{a}', \mathbf{b}', \mathbf{c}')$, origin O': point $X(x', y', z')$

(i) linear part: change of orientation or length

$$(\mathbf{a}', \mathbf{b}', \mathbf{c}') = (\mathbf{a}, \mathbf{b}, \mathbf{c})P$$

= $(\mathbf{a}, \mathbf{b}, \mathbf{c})\begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, P_{13}\mathbf{a} + P_{23}\mathbf{b} + P_{33}\mathbf{c}).$

(ii) origin shift by a shift vector $p(p_1, p_2, p_3)$:

$$O' = O + p$$

the origin O' has coordinates (p₁,p₂,p₃) in the old coordinate system

Transformation of the coordinates of a point X(x,y,z):

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = Q \begin{pmatrix} x \\ y \\ z \end{pmatrix} + q \quad \text{wit}$$
$$= \begin{pmatrix} Q_{11}x + Q_{12}y + Q_{13}z + q_1 \\ Q_{21}x + Q_{22}y + Q_{23}z + q_2 \\ Q_{31}x + Q_{32}y + Q_{33}z + q_3 \end{pmatrix}.$$

with
$$Q = P^{-1}$$

 $q = -P^{-1}p$.

special cases

-origin shift:

-change of basis :

$$oldsymbol{x}' = oldsymbol{x} - oldsymbol{p}$$
 $oldsymbol{x}' = oldsymbol{P}^{-1}oldsymbol{x}$

Transformation of symmetry operations (W,w):

P

WP

 \mathbb{W}

Mapping of mappings

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Matrix formalism: 4x4 matrices

augmented matrices:

$$\mathbb{W} = \begin{pmatrix} W_{11} & W_{12} & W_{13} & w_1 \\ W_{21} & W_{22} & W_{23} & w_2 \\ \frac{W_{31} & W_{32} & W_{33} & w_3}{0 & 0 & 1} \end{pmatrix}, \quad \mathbb{X} = \begin{pmatrix} x \\ y \\ \frac{z}{1} \end{pmatrix}; \quad \mathbb{X}' = \begin{pmatrix} x' \\ y' \\ \frac{z'}{1} \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{Q}\mathbf{x} = \mathbf{P}^{-1}\mathbf{x}$$

$$W' = QWP = P^{-1}WP$$

Problem: SYMMETRY DATA ITA SETTINGS

530 ITA settings of **orthorhombic** and **monoclinic** groups

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

MONOCLINIC SYSTEM

Table 4.3.1 (cont.)

No. of	Schoenflies	Standard short		Extended He	ermann-Mau settings and	guin symbol cell choices	s for various	and the second sec	no tenate
space group	symbol Hermann- Mauguin symbol		a <u>b</u> c	c <u>h</u> a	c <u>h</u> a ab <u>c</u>		ba <u>č</u> <u>a</u> bc <u>ā</u> ct		Unique axis b Unique axis c Unique axis a
3	C_2^1	P2	P121	P121	P112	P112	P211	P211	
4	C_2^2	P21	P12,1	P12,1	P112,	P112,	P2,11	P2,11	110 2001
5	C2	C2	C121 21 A121	A121 21 C121 2,	A112 21 B112	B112 21 A112	B211 21 C211	C211 2, B211	Cell choice 1 Cell choice 2
			1121 2,	/121 2,	/112 ² 1 21	/112 ² 1 21	2, 1211 2,	2, 1211 2,	Cell choice 3
6	C_{\star}^{1}	Pm	P1m1	P1m1	Pllm	Pllm	Pm11	Pm11	eren and an and
7	C,2	Рс	Plcl Plnl Plal	Pla1 Pln1 Plc1	P11a P11n P11b	P11b P11n P11a	Pb11 Pn11 Pc11	Pc11 Pn11 Pb11	Cell choice 1 Cell choice 2 Cell choice 3
8	C,3	Cm	Clml a Alml	Alm1 c Clm1	Allm b Bllm	B11m a A11m	Bm11 c	Cm11 b	Cell choice 1
				a Ilm1 n	a 111m n	b 111m n	Cm11 b Im11 n	Bm11 c Im11 n	Cell choice 2 Cell choice 3
9	C.	Cc	Clcl	Alal	Alla	B11b	Bb11 n	Cell	Cell choice 1
			Alnl a Ilal	Clnl c Ilcl	B11n b 111b	Alln a Illa	Cn11 c Ic11	Bn11 b Ib11	Cell choice 2 Cell choice 3
	and the state		c	a	a	Ъ	b	c	Cen choice 3
10	C ¹ _{2*}	P2/m	$P1\frac{2}{m}1$	$P1\frac{2}{m}1$	$P11\frac{2}{m}$	$P11\frac{2}{m}$	$P\frac{2}{m}$ 11	$P\frac{2}{m}$ 11	
11	C2	P2 /m	p12,1	2,1	2. 2.		-2	2.	

Monoclinic descriptions

		abc	cba					Monoclinic axis b
	Transf.			abc	baīc			Monoclinic axis c
						abc	ācb	Monoclinic axis a
		C12/c1	A12/a1	A112/a	B112/b	B2/b11	C2/c11	Cell type 1
HM	C2/c	A12/n1	C12/n1	B112/n	A112/n	C2/n11	B2/n11	Cell type 2
		I12/a1	I12/c1	I112/b	I112/a	I2/c11	I2/b11	Cell type 3

Orthorhombic descriptions

No.	HM	abc	baīc	cab	ē ba	bca	aīcb
33	$Pna2_1$	$Pna2_1$	$Pbn2_1$	$P2_1nb$	$P2_1cn$	$Pc2_1n$	$Pn2_1a$

EXERCISES

Problem 2.1

Use the retrieval tools GENPOS (generators and general positions), WYCKPOS (Wyckoff positions and HKLCOND (reflection conditions) for accessing the space-group data. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA.

Consider the General position data of the space group Im-3m (No. 229). Using the option Non-conventional setting obtain the matrix-column pairs of the symmetry operations with respect to a primitive basis, applying the transformation (a',b',c') = 1/2(-a+b+c,a-b+c,a+b-c)

CRYSTAL-STRUCTURE DESCRIPTIONS

Inorganic Crystal Structure Database

CC=45520			(Details Bon	ds Pattern Struct	ture	mol	
Title	Redetermin	ation of the o	xyge	n parameters i	n zircon (Zr Si O4).			
Authors	Krstanovic,	I.R.						
Reference	Acta Crysta Link XRef		lattice					
Compound	Zr (Si 04)	4]						
Cell 6.6164(5), 6.6164, 6.0150(5), 90., 90., 90. I41/AMDZ (141) V=263.32								parameters
Remarks	R=0.070000 : PDC =01-073-6646 : PDF =6-266 : TYP =ZrSiO4 : XDS MIN =Zircon : At least one temperature factor missing in the paper. hk0- and 0kl-data, crystals not metamict							space group
Atom (site)) Oxid.		x,	y, z, B, Occup	oancy			
Zr1	(4a)	4	0	0.75	0.125	0	1	
Si1	(4b)	4	0	0.75	0.625	0	1	
01	(16h)	-2	0	0.067(3)	0.198(3)	0	1	

asymmetric-unit data

EXERCISES

Problem 2.2

Print 2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type:

Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol.

CC=45520		D	etails Bonds F	Pattern Structure) (Jr	nol	CC=31101	C=31101 Details Bonds Pattern				ttern Structure)(Imol
Title	Redeterminat	ion of the	e oxygen paramete	ers in zircon (Zr Si	04).		Title		Die Kristallstruktur von Zirkon und die Kriterien fuer s					
Authors	Krstanovic, I.	R.					Lagen in tetragonalen Raumgruppen							
Reference			(1958) 11 , 896-8	97			Authors	Wyckoff, R.W.				omotrio. Kristalla	hvei	
Compound		-						Zeitschrift fuer Kristallographie, Kristallgeometrie, Kris Kristallchemie (1927) 66, 73-102 Link XRef SCOPUS SCIRUS Google Also: Philosophical Magazine, Serie (1926) 1, 1151-11				nysi	к,	
Cell		.6164(5), 6.6164, 6.0150(5), 90., 90., 90. 41/AMDZ (141) V=263.32						Zr (Si O4) - [Zircon] Zirconium silicate [ABX4] [tI24] [h b a] [ZrSiO4]				a]		
Remarks	XDS MIN =Zi	rcon :)1-073-6646 : PDF ure factor missing i	+:	Cell	6.61, 6.61, 5 I41/AMDS (
			stals not metamic					COR MIN = Zircon : PDF = 6-266 : TYP = ZrSiO4 : XDS At least one temperature factor missing in the paper.						
Atom (site)) Oxid.		x, y, z, B, Occup	ancy			Remarks	Remarks No R value given in the paper. Revised data of 31084						
Zr1 (*	4a)	4	0 0.75	0.125	0	1								
Si1 (*	4b)	4	0 0.75	0.625	0	1	Atom (site) Oxid.		х,	y, z, B, Occup	oancy		
01 (16h)	-2	0 0.067(3)	0.198(3)	0	1	Zr1	(4a)	4	0	0	0	0	1
							Si1	(4b)	4	0	0	0.5	0	1
							01	(16h)	-2	0	0.2(1)	0.34(2)	0	1

EXERCISES

Problem 2.2

Structure I: Space group $I4_I/amd$, No. 141 origin choice I at $\overline{4}m2$ a=6.60 Å c=5.88 Å

> $Zr:(a) \ 0,0,0; \ 0,\frac{1}{2},\frac{1}{4}; \ \frac{1}{2},0,\frac{3}{4}; \ \frac{1}{2},\frac{1}{2},\frac{1}{2};$ $Si:(b) \ 0,0,\frac{1}{2}; \ 0,\frac{1}{2},\frac{3}{4}; \ \frac{1}{2},0,\frac{1}{4}; \ \frac{1}{2},\frac{1}{2},0;$ $O:(h) \ (0,u,v; \ 0,\bar{u},v; \ u,0,\bar{v}; \ \bar{u},0,\bar{v};$ $\bar{u},\frac{1}{2},v+\frac{1}{4}; \ u,\frac{1}{2},v+\frac{1}{4};) \ [\text{ and t}$ u=0.20; v=0.34

Problem 2.2

Structure 2: Space group $I4_I/amd$, No. 141 origin choice 2 at 2/m at 0,-1/4,1/8 from $\overline{4}m2$ a=6.6164 Å c=6.015 Å

Coordinate
transformation
Origin choice
$$I \longrightarrow Origin choice 2$$

 $p=0,-1/4,1/8$

(i) What are the new coordinates of the Zr atoms?
(ii) What are the new coordinates of the Si atoms?
(iii) What are the new coordinates of the O atom at 0, u, v?
(iv) What are the new coordinates of the other O atoms?

Problem 2.2

Coordinate transformation primitive basis description $\mathbf{a}' = \mathbf{a}; \ \mathbf{b}' = \mathbf{b}; \ \mathbf{c}' = \frac{1}{2}(\mathbf{a} + \mathbf{b} + \mathbf{c})$

(v) What are the new coordinates of the first Zr atom ?
(vi) What are the new coordinates of the first Si atom ?
(vii) What are the new coordinates of the O atom originally a (viii) What are the lattice parameters of the primitive unit cell

Origin 2 description x' = x - p

- (i) $Zr: (a) 0, \frac{1}{4}, \frac{\overline{1}}{8} \sim \frac{7}{8}; 0, \frac{3}{4}, \frac{1}{8}; \frac{1}{2}, \frac{1}{4}, \frac{5}{8}; \frac{1}{2}, \frac{3}{4}, \frac{3}{8};$
- (ii) $Si: (b) \ 0, \frac{1}{4}, \frac{3}{8}; \ 0, \frac{3}{4}, \frac{5}{8}; \ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}; \ \frac{1}{2}, \frac{3}{4}, \frac{\overline{1}}{8} \sim \frac{7}{8};$
- (iii) O: (h) 0, 0.20 + 0.25, 0.34 0.125 = 0, 0.45, 0.215.

the rest of oxygen atoms

0, 0.05, 0.215 0, 0.55, 0.785 0.80, 0.75, 0.465 0.20, 0.75, 0.465 0.20, 0.75, 0.465, all also with $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) + .$ 0, 0.0167, 0.198

SOLUTION

primitive basis description

$$P = \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix} \qquad P^{-1} = \begin{pmatrix} 1 & 0 & \bar{1} \\ 0 & 1 & \bar{1} \\ 0 & 0 & 2 \end{pmatrix}$$
$$x' = P^{-1}x$$

(v) The new coordinates of the first Zr atom are $0 - \frac{7}{8}, \frac{1}{4} - \frac{7}{8}, 2 \cdot \frac{7}{8} \sim \frac{1}{8}, \frac{3}{8}, \frac{3}{4}$.

(vi) The new coordinates of the first Si atom are 0 - 3/8, 1/4 - 3/8, 2 ⋅ 3/8 ~ 5/8, 7/8, 3/4.
(vii) The new coordinates of the first O atom are 0 - 0.215, 0.45 - 0.215, 2 ⋅ 0.215 ~ 0.785, 0.235, 0.430.

Structure Utilities

	Structure Utilities	
\rightarrow	CELLTRAN	Transform Unit Cells
	STRAIN	Strain Tensor Calculation
	WPASSIGN	Assignment of Wyckoff Positions
\rightarrow	TRANSTRU	Transform structures to lower symmetry Space Group basis.
\rightarrow	SETSTRU	Alternative Settings for a given Crystal Structure
	EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure

Problem: ALTERNATIVE SETTINGS SETSTRU

ITA-settings for the space group C2/c (No.15)

Choose the initial and final space groups symbols

in matrices must be read by columns. P is the transformation from standard to non-

Initial	Final	Setting	Р	P ⁻¹
0	0	C 1 2/c 1	a,b,c	a,b,c
0	0	A 1 2/n 1	-a-c,b,a	c,b,-a-c
0	0	/ 1 2/a 1	c,b,-a-c	-a-c,b,a
0	0	A 1 2/a 1	c,-b,a	c,-b,a
C	0	C 1 2/n 1	a,-b,-a-c	a,-b,a-c
C	0	/ 1 2/c 1	-a-c,-b,c	-a-c,-b,c
C	0	A 1 1 2/a	c,a,b	b,c,a
С	0	B 1 1 2/n	a,-a-c,b	a,c,-a-b
С	0	/ 1 1 2/b	-a-c,c,b	-a-b,c,b
C	0	B 1 1 2/b	a,c,-b	a,-c,b
C	0	A 1 1 2/n	-a-c,a,-b	b,-c,-a-b
0	0	/112/a	c,-a-c,-b	-a-b,-c,a
0	0	<i>B</i> 2/ <i>b</i> 1 1	b,c,a	c,a,b

 $(a, b, c)_n = (a, b, c)_s P$

Problem: STRUCTURE TRANSFORMATION TRANSTRU

Transform Structure

Transform Structure	Structure Data			
 TRANSTRU can transform a structure in two ways: To a lower symmetry space group. The transformed structure is given in the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions. With an arbitrary matrix. The structure, including the cell parameters and the atoms in the unit cell, is 	[in CIF format] High Symmetry Structure	HINT: [The option for a given filename is preferential] # Space Group ITA number 221 # Lattice parameters 5.0 5.0 90 90 90 90 # Number of independent atoms in the asymmetric unit 3 # [atom type] [number] [WP] [x] [y] [z] Ba 1 la 0.0 0.0 0 Ti 2 lb 0.5 0.5 0.5 0 3 3c 0.5 0.0 0.5 Transform structure to a subgroup basis •		
transformed with an arbitrary matrix introduced		Transform structure with an arbitrary matrix		
by the user.	struct	Show		
	asymm	etric default		

Problem: UNIT CELL CELLTRAN

Transform Unit Cell

Transform Unit Cell	Cell Parameters: 444	90 90 90	Centering
Given the cell parameters (separated with spaces), the centring and a transformation matrix the program calculates:	Please, define the bases	transformation matrix that rela	Ex: c,a,b (read by
 The transformed unit cell. The primitive unit cell. The reduced unit cell. The metric tensors for each cell. 	colum	Rotational part	Origin Shift
 The standard root tensor (transformation from the conventional to a cartesian basis) 	or in matrix form:	1 0 0 0 1 0 0 0 1	0 0 0

Show

Problem 2.2 (cont)

Repeat the calculations of Problem 2.2 applying the corresponding tools of the Bilbao Crystallographic server. Compare the results.

Problem: STRUCTURE VISUALIZATION VISUALIZE

Visualize with Jmol

Visualize structures with Jmol

Visualize structures using Jmol. Jmol is an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

Structure visualization

View Structure (with Jmol applet)

Structure visualization

View Structure (with Jmol applet)

Subperiodic groups: rod and layer groups

Rod groups:

3dim groups with I dim translations

polymeric molecules nanotubes uniform magnetic field to bulk crystals

Layer groups:

3dim groups with 2dim translations

bicrystals interfaces domain walls thin films

Databases for subperiodic groups

International Tables for Crystallography, Volume E: Subperiodic groups

> generators general postitions Wyckoff positions

Data on maximal subgroups (Aroyo & Wondratschek)

maximal subgroups of index 2,3 and 4 series of isomorphic subgroups

Retrieval tools