THE BILBAO CRYSTALLOGRAPHIC SERVER:

CRYSTALLOGRAPHIC DATABASES AND COMPUTER PROGRAMS

Mois I. Aroyo, J. M. Perez-Mato and Danel Orobengoa Universidad del Pais Vasco, Bilbao, Spain

bilbao crystallographic server

[The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]
[Space Groups] [Layer Groups] [Rod Groups] [Frieze Groups] [Wyckoff Sets]

First announcement and pre-registration of a School in 2009 on

CrystallographyOnline:
InternationalSchoolon
theUseondApplications
of heBilbao
Crystallographic
Server

Sections

Retrieval Tools
Group-Subgroup
Representations
Solid State
Structure Utilities
Subperiodic
ICSDB

Contact us
About us
Links
Publications

Space Groups Retrieval Tools

GENPOS	Generators and General Positions of Space Groups
WYCKPOS	Wyckoff Positions of Space Groups
HKLCOND	Reflection conditions of Space Groups
MAXSUB	Maximal Subgroups of Space Groups
SERIES	Series of Maximal Isomorphic Subgroups of Space Groups
WYCKSETS	Equivalent Sets of Wyckoff Positions
NORMALIZER	Normalizers of Space Groups
KVEC	The k-vector types and Brillouin zones of Space Groups

Group - Subgroup Relations of Space Groups

SUBGROUPGRAPH	Lattice of Maximal Subgroups
HERMANN	Distribution of subgroups in conjugated classes
COSETS	Coset decomposition for a group-subgroup pair
WYCKSPLIT	The splitting of the Wyckoff Positions
MINSUP	Minimal Supergroups of Space Groups
SUPERGROUPS	Supergroups of Space Groups
CELLSUB	List of subgroups for a given k-index.
CELLSUPER	List of supergroups for a given k-index.
COMMONSUBS	Common Subgroups of Space Groups
COMMONSUPFR	Common Sunerarouns of Two Snace Grouns

Contributing authors

Universidad del Pais Vasco, Bilbao

Eli Kroumova
Svetoslav Ivantchev
Cesar Capillas
Danel Orobengoa
Gemma de la Flor
Gotzon Madariaga
J. M. Perez-Mato
Mois I.Aroyo

Contributing authors International Cooperation

Technische Universität, Karlsruhe, Germany Hans Wondratschek
Universität Bonn, Germany
Rudolf Hund
Sofia University, Bulgaria
Assen Kirov
Brigham Young University, Provo, USA
Dorian Hatch
Harold Stokes
Institut Laue-Langevin, Grenoble, France
Juan Rodriguez-Carvajal

Crystallographic databases

Group-subgroup relations

Structural utilities

Representations of point and space groups

Solid-state applications

Crystallographic Databases

International Tables for Crystallography

Space-group Data

International Tables for Crystallography

Volume A: Space-group symmetry
generators
Wyckoff positions
Wyckoff sets
normalizers

Volume AI: Symmetry Relations between space groups
maximal subgroups of index 2,3 and 4
series of isomorphic subgroups

Retrieval tools


```
Maximal non-isomorphic subgroups
I \begin{tabular}{ll}
{\([2] P 411(P 4,75)\)} & \(1 ; 2 ; 3 ; 4\) \\
{\([2] P 21 m(C m m 2,35)\)} & \(1 ; 2 ; 7 ; 8\) \\
{\([2] P 2 m 1(P m m 2,25)\)} & \(1 ; 2 ; 5 ; 6\)
\end{tabular}
```

IIa none
IIb $\quad[2] P 4_{2} m c\left(\mathbf{c}^{\prime}=2 \mathbf{c}\right)(105) ;[2] P 4 c c\left(\mathbf{c}^{\prime}=2 \mathbf{c}\right)(103) ;[2] P 4_{2} c m\left(\mathbf{c}^{\prime}=2 \mathbf{c}\right)(101) ;[2] C 4 m d\left(\mathbf{a}^{\prime}=2 \mathbf{a}, \mathbf{b}^{\prime}=2 \mathbf{b}\right)(P 4 b m, 100)$;
$[2] F 4^{2} m c\left(\mathbf{a}^{\prime}=2 \mathbf{a}, \mathbf{b}^{\prime}=2 \mathbf{b}, \mathbf{c}^{\prime}=2 \mathbf{c}\right)(I 4 \mathrm{~cm}, 108) ;[2] F 4 m m\left(\mathbf{a}^{\prime}=2 \mathbf{a}, \mathbf{b}^{\prime}=2 \mathbf{b}, \mathbf{c}^{\prime}=2 \mathbf{c}\right)(I 4 \mathrm{~mm}, 107)$

Maximal isomorphic subgroups of lowest index

IIc $\quad[2] P 4 m m\left(\mathbf{c}^{\prime}=2 \mathbf{c}\right)(99) ;[2] C 4 m m\left(\mathbf{a}^{\prime}=2 \mathbf{a}, \mathbf{b}^{\prime}=2 \mathbf{b}\right)(P 4 m m, 99)$

```
Minimal non-isomorphic supergroups
I [2]P4/mmm(123); [2]P4/nmm(129)
II [2]I4mm(107)
```


Generators and General Positions

How to select the group

The space groups are specified by their number as given in the Intemational Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

Please, enter the sequential number of group as given in the Intemational Tables for Crystallography, Vol. A or

Show:	Generators only All General Positions

ITA-settings symmetry data

PRACTICAL EXERCISES

Bilbao Crystallographic Server www.cryst.ehu.es

Bilbao Crystallographic Server - mirror site http://158.227.0.68/

MATRIX-COLUMN PRESENTATION OF SYMMETRY OPERATIONS

Crystallographic symmetry operations

Symmetry operations of an object

The isometries which map the object onto itself are called symmetry operations of this object. The symmetry of the object is the set of all its symmetry operations.

Crystallographic symmetry operations

If the object is a crystal pattern, representing a real crystal, its symmetry operations are called crystallographic symmetry operations.

The equilateral triangle allows six symmetry operations: rotations by 120 and 240 around its centre, reflections through the three thick lines intersecting the centre, and the identity operation.

Description of isometries

coordinate system:

$\{O, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$
isometry:
point $X \longrightarrow$ point \tilde{X}

$$
\begin{aligned}
& \tilde{x}=W_{11} x+W_{12} y+W_{13} z+w_{1} \\
& \tilde{y}=W_{21} x+W_{22} y+W_{23} z+w_{2} \\
& \tilde{z}=W_{31} x+W_{32} y+W_{33} z+w_{3}
\end{aligned}
$$

Matrix formalism

$$
\begin{aligned}
& \left(\begin{array}{l}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right)=\left(\begin{array}{l}
W_{11} W_{12} W_{13} \\
W_{21} W_{22} W_{23} \\
W_{31} W_{32} W_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) \\
& \text { linear/matrix } \\
& \text { part }
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\boldsymbol{x}}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{w} \\
& \tilde{\boldsymbol{x}}=(\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x} \text { or } \tilde{\boldsymbol{x}}=\{\boldsymbol{W} \mid \boldsymbol{w}\} \boldsymbol{x}
\end{aligned}
$$

matrix-column pair

Matrix formalism

combination of isometries:

$\left(\boldsymbol{W}_{2}, \boldsymbol{w}_{2}\right)\left(\boldsymbol{W}_{1}, \boldsymbol{w}_{1}\right)=\left(\boldsymbol{W}_{2} \boldsymbol{W}_{1}, \boldsymbol{W}_{2} \boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right)$
inverse isometries:

$$
(\boldsymbol{W}, \boldsymbol{w})^{-1}=\left(\boldsymbol{W}^{-1},-\boldsymbol{W}^{-1} \boldsymbol{w}\right)
$$

Matrix formalism: 4×4 matrices

augmented matrices:

$$
\left.\begin{array}{l}
\boldsymbol{x} \rightarrow \star=\left(\begin{array}{c}
x \\
y \\
z \\
\hline 1
\end{array}\right) ; \tilde{\boldsymbol{x}} \rightarrow \tilde{\mathfrak{z}}=\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\hline 1
\end{array}\right) \\
(\boldsymbol{W}, \boldsymbol{w}) \rightarrow \mathbb{W}=\left(\begin{array}{ll|l}
\boldsymbol{W} & \boldsymbol{W} & \boldsymbol{w} \\
& & \\
\hline 0 & 0 & 0
\end{array}\right. \\
\hline \boldsymbol{\tilde { V }}
\end{array}\right)
$$

point $X \longrightarrow$ point \tilde{X} :

$$
\tilde{\otimes}=\mathbb{W} \mathbb{x}
$$

$$
\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\hline 1
\end{array}\right)=\left(\begin{array}{ccc|c}
& \boldsymbol{W} & & \boldsymbol{w} \\
& & & \\
\hline 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
\hline 1
\end{array}\right)
$$

4×4 matrices: general formulae

point $X \longrightarrow$ point $\tilde{X}:$

$$
\tilde{\mathbb{x}}=\mathbb{W} \mathbb{\mathbb { x }} \quad\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\hline 1
\end{array}\right)=\left(\begin{array}{lll|l}
& & & \\
& \boldsymbol{W} & & \boldsymbol{w} \\
& & & \\
\hline 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
\hline 1
\end{array}\right)
$$

combination and inverse of isometries:
$(\mathbb{W})^{-1}=\left(\mathbb{W}^{-1}\right) \quad \mathbb{W}^{-1}=\left(\begin{array}{ccc|c} & W^{-1} & -W^{-1} \boldsymbol{w} \\ & & & 1\end{array}\right)$
$\mathbb{W}_{3}=\mathbb{W}_{2} \mathbb{W}_{1}$

EXERCISES

Problem I.I

Construct the matrix column pair (W,w) (and the corresponding (4×4) matrix) of the following coordinate triplets:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,--y,-z$
(4) $x,-y+I / 2, z+I / 2$

GEOMETRIC MEANING OF MATRIX-COLUMN PAIRS (W,w)

Crystallographic symmetry operations

characteristics:

fixed point $\tilde{P}=P$
 of isometries

Types of isometries preserve handedness

identity:
translation t :
rotation:
screw rotation:
the whole space fixed
no fixed point $\quad \tilde{\mathbf{x}}=\mathbf{x}+\mathbf{t}$
one line fixed rotation axis

$$
\phi=k \times 360^{\circ} / N
$$

no fixed point screw axis

Types of isometries

do not

 preserve handedness
roto-inversion:

inversion:

reflection:

glide reflection:

plane fixed reflection/mirror plane

centre of roto-inversion fixed roto-inversion axis

centre of inversion fixed

no fixed point glide plane
glide vector

Geometric meaning of (W, w)

W information

(a) type of isometry

$\operatorname{tr}(\boldsymbol{W})$	$\operatorname{det}(\boldsymbol{W})=+1$				$\operatorname{det}(\boldsymbol{W})=-1$					
	3	2	1	0	-1	-3	-2	-1	0	1
	1	6	4	3	2	$\overline{1}$	$\overline{6}$	$\overline{4}$	$\overline{3}$	$\overline{2}=m$
order	1	6	4	3	2	2	6	4	6	2

rotation angle

$$
\cos \varphi=(\pm \operatorname{tr}(\boldsymbol{W})-1) / 2
$$

Geometric meaning of (W, w)

W information

(b) axis or normal direction \boldsymbol{u} :

$$
\boldsymbol{W} \boldsymbol{u}= \pm \boldsymbol{u}
$$

(bl) rotations:

$\boldsymbol{Y}(\boldsymbol{W})=\boldsymbol{W}^{k-1}+\boldsymbol{W}^{k-2}+\ldots+\boldsymbol{W}+\boldsymbol{I}$
(b2) roto-inversions: $\quad \boldsymbol{Y}(-\boldsymbol{W})$
reflections: $\quad \boldsymbol{Y}(-\boldsymbol{W})=-\boldsymbol{W}+\boldsymbol{I}$

Geometric meaning of (W, w)

W information

(c) sense of rotation:

for rotations or rotoinversions with $k>2$

$$
\operatorname{det}(\boldsymbol{Z}): \boldsymbol{Z}=[\boldsymbol{u}|\boldsymbol{x}|(\operatorname{det} \boldsymbol{W}) \boldsymbol{W} \boldsymbol{x}]
$$

\boldsymbol{x} non-parallel to \boldsymbol{u}

Geometric meaning of (W, w)

w-information

(A) intrinsic translation part :

glide or screw component

(AI) screw rotations:

$$
\boldsymbol{t} / k=\frac{1}{k} \boldsymbol{Y} \boldsymbol{w}, \text { where } \boldsymbol{W}^{k}=\boldsymbol{I}
$$

(A2) glide reflections:

$$
\boldsymbol{t} / k=\frac{1}{2}(\boldsymbol{W}+\boldsymbol{I})
$$

Geometric meaning of (W, w)

w-information

(B) location (fixed points x_{F}):

$$
\begin{array}{rr}
\text { (BI) } \boldsymbol{t} / k=\mathbf{0}: & (\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x}_{F}=\boldsymbol{x}_{F} \\
& \\
\text { (B2) } \boldsymbol{t} / k \neq \mathbf{0}: & \left(\boldsymbol{W}, \boldsymbol{w}_{l p}\right) \boldsymbol{x}_{F}=\boldsymbol{x}_{F} \\
& \boldsymbol{w}_{l p}=\boldsymbol{w}-\boldsymbol{t} / k
\end{array}
$$

EXERCISES

Problem I.I (cont.)

Construct the matrix-column pairs (W,w) (and the corresponding (4×4) matrices) of the following coordinate triplets:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,-y,-z$
(4) $x,-y+I / 2, z+I / 2$

Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b, i.e. determine (i) the type, (ii) glide (screw) components, (iii) fixed points, (iv) nature and location of the symmetry elements.

Problem I.I

SOLUTION

(i)

$$
\begin{aligned}
& W(1)=\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\hline & 0 & 1
\end{array} 0\right. \\
& W(3)=\left(\begin{array}{cc|c}
\overline{1} & 0 & 0 \\
0 & \overline{1} & 0 \\
0 & 0 & \overline{1} \\
0 & 0 \\
\hline 0 & 0 & 0
\end{array}\right), W(4)=\left(\begin{array}{cc|c}
1 & 0 & 0
\end{array}\right) \begin{array}{c}
0 \\
0 \\
\hline
\end{array} 0
\end{aligned}
$$

(ii) ITA description: under Symmetry operations

(1)	(2)	(3)	(4)
1	$2\left(0, \frac{1}{2}, 0\right) 0, y, \frac{1}{4}$	$\overline{1} 0,0,0$	$c x, \frac{1}{4}, z$

International Tables for Crystallography (2006). Vol. A, Space group 14, pp. 184-191.
$P 2_{1} / c$
No. 14
$C_{2 h}^{5}$
$P 12_{1} / c 1$
$2 / m$

UNIQUE AXIS b, CELL CHOICE 1

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3)$

Positions

Multiplicity,
Coordinates
Wyckoff letter,
Site symmetry
$4 \quad e \quad 1$
(1) x, y, z
(2) $\bar{x}, y+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(3) $\bar{x}, \bar{y}, \bar{z}$
(4) $x, \bar{y}+\frac{1}{2}, z+\frac{1}{2}$

Symmetry operations
(1) 1
(2) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, \frac{1}{4}$
(3) $\overline{1} \quad 0,0,0$
(4) $c \quad x, \frac{1}{4}, z$

EXERCISES

Problem 1.2

Consider the matrices

$(\boldsymbol{A}, \boldsymbol{a})=\left(\begin{array}{ll}0 & 1\end{array} 0\right.$
(i) What is the matrix-column pair resulting from
$(\boldsymbol{B}, \boldsymbol{b})(\boldsymbol{A}, \boldsymbol{a})=(\boldsymbol{C}, \boldsymbol{c})$, and $(\boldsymbol{A}, \boldsymbol{a})(\boldsymbol{B}, \boldsymbol{b})=(\boldsymbol{D}, \boldsymbol{d})$?
(ii) What is $(\boldsymbol{A}, \boldsymbol{a})^{-1},(\boldsymbol{B}, \boldsymbol{b})^{-1},(\boldsymbol{C}, \boldsymbol{c})^{-1}$ and $(\boldsymbol{D}, \boldsymbol{d})^{-1}$?
(iii) What is $(\boldsymbol{B}, \boldsymbol{b})^{-1}(\boldsymbol{A}, \boldsymbol{a})^{-1}$?
(iv) The geometrical meaning of $(\boldsymbol{A}, \boldsymbol{a}),(\boldsymbol{B}, \boldsymbol{b}),(\boldsymbol{C}, \boldsymbol{c})$ and $(\boldsymbol{D}, \boldsymbol{d})$

Problem I. 2

SOLUTION

(i) $(\boldsymbol{B}, \boldsymbol{b})(\boldsymbol{A}, \boldsymbol{a}): \boldsymbol{B} \boldsymbol{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & \overline{1} \\ 0 & 1 & 0\end{array}\right), \boldsymbol{B} \boldsymbol{a}=\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right)$,
$B a+b=B a$ for $b=o$.
Therefore, $(\boldsymbol{B} \boldsymbol{A}, \boldsymbol{B} a+\boldsymbol{b})=(\boldsymbol{C}, \boldsymbol{c})=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & \overline{1} \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right)$.
Analogously one calculates
$(\boldsymbol{A}, \boldsymbol{a})(\boldsymbol{B}, \boldsymbol{b})=(\boldsymbol{D}, \boldsymbol{d})=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ \overline{1} & 0 & 0\end{array}\right),\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right)$.

Problem I. 2

SOLUTION

$$
\text { (ii) } \begin{aligned}
(\boldsymbol{A}, \boldsymbol{a})^{-1} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & \overline{1}
\end{array}\right),\left(\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right) ;(\boldsymbol{B}, \boldsymbol{b})^{-1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) . \\
(\boldsymbol{C}, \boldsymbol{c})^{-1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & \overline{1} & 0
\end{array}\right),\left(\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right) ;(\boldsymbol{D}, \boldsymbol{d})^{-1}=\left(\begin{array}{lll}
0 & 0 & \overline{1} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{r}
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right) .
\end{aligned}
$$

$$
\text { (iii) }(\boldsymbol{B}, \boldsymbol{b})^{-1}(\boldsymbol{A}, \boldsymbol{a})^{-1}=\left(\begin{array}{lll}
0 & 0 & \overline{1} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{r}
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right)=(\boldsymbol{D}, \boldsymbol{d})^{-1} \neq(\boldsymbol{C}, \boldsymbol{c})^{-1} .
$$

Note, that $(\boldsymbol{B}, \boldsymbol{b})^{-1}(\boldsymbol{A}, \boldsymbol{a})^{-1}=[(\boldsymbol{A}, \boldsymbol{a})(\boldsymbol{B}, \boldsymbol{b})]^{-1}=(\boldsymbol{D}, \boldsymbol{d})^{-1}$.

Problem I. 2

SOLUTION

From the matrix parts the 'types' of the operations are determined by the determinants and traces:

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
det	+1	+1	+1	+1
tr	$\overline{1}$	0	1	1
type	2	3	4	4

All the matrices are those of rotations. The directions [$u v w$] of the rotation axes are determined by applying either equation 1.4 .11 or calculating the corresponding matri-

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
$u=v$	$u=v$	$u=u$	$u=w$
$v=u$	$v=w$	$v=-w$	$v=v$
$w=-w$	$w=u$	$w=v$	$w=-u$
$[110]$	$[111]$	$[100]$	$[010]$

Problem I. 2

SOLUTION

The matrix-column pair $(\boldsymbol{A}, \boldsymbol{a})$: translation part

$$
\frac{1}{2}\left[\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right)
$$

is the screw part of $(\boldsymbol{A}, \boldsymbol{a})$.
The reduced operation is $\left(\boldsymbol{A}, \boldsymbol{a}_{l p}\right)=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1}\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 1 / 2\end{array}\right)$.
(A, a) : screw rotation 2 । screw rotation axis $\mathrm{x}, \mathrm{x}, \mathrm{I} / 4$
$(\boldsymbol{B}, \boldsymbol{b})$: rotation 3
rotation axis $\mathrm{x}, \mathrm{x}, \mathrm{x}$
$3^{-} x, x, x$

Problem I. 2

SOLUTION

The matrix-column pair $(\boldsymbol{C}, \boldsymbol{c})$: translation part

$$
\begin{aligned}
& \frac{\boldsymbol{t}}{4}=\frac{1}{4}\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & \overline{1} & 0
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \overline{1} & 0 \\
0 & 0 & \overline{1}
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & \overline{1} \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right)= \\
& =\frac{1}{4}\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
0 \\
0
\end{array}\right) .
\end{aligned}
$$

(C, c) : screw rotation 42 screw rotation axis $\times, 0, \mathrm{l} / 2$

ITA description:

$$
4^{+}(I / 2,0,0) \times, 0, I / 2
$$

Problem: Geometric Interpretation of (W,w)
 SYMMETRY OPERATION

Geometric Interpretation of Matrix Column Representation of Symmetry Operation

Symmetry Operation

This program calculates the geometric interpretation of matrix column representation of symmetry operation for a given crystal system or space group.

Inpunt:
i) The crystal system or the space group number.
ii) The matrix column representation of symmetry operation.

If you want to work on a non conventional setting click on Non conventional setting, this will show you a form where you have to introduce the transformation matrix relating the conventional setting of the group you have chosen with the non conventional one you are interested in.

Output:
We obtain the symmetry operation.

Please, introduce the crystal system

Or please, enter the sequential number of group as given in the International Tables for Crystallography, Vol. A

Matrix column representation of symmetry operation

Standard/Default Setting
Standard/Default Setting

Problem I. 3

I. Solve the problems I.I and I. 2 applying the program SYMMETRY OPERATION

Problem I. 4

I. Characterize geometrically the matrix-column pairs listed under General position of the space group P4mm in ITA. Compare the results with the data listed under Symmetry operations.
2.

Consider the diagram of the symmetry elements of P4mm. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram.

P4mm

 $C_{4 v}^{1}$P4mm
No. 99

4 mm
Tetragonal

Origin on 4 mm
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{2} ; \quad 0 \leq z \leq 1 ; \quad x \leq y$
Symmetry operations
(1) 1
(2) $20,0, z$
(3) $4^{+} 0,0, z$
(4) $4^{-} 0,0, z$
(5) $m x, 0, z$
(6) $m 0, y, z$
(7) $m x, x, z$
(8) $m x, x, z$

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity,
Coordinates
Wyckoff letter,
Site symmetry
$8 \quad g \quad 1$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) \bar{y}, x, z
(4) y, \bar{x}, z
(5) x, \bar{y}, z
(6) \bar{x}, y, z
(7) \bar{y}, \bar{x}, z
(8) y, x, z

GENERATION
 OF
 SPACE GROUPS

Generators

Set of generators of a group is a set of spacegroup elements such that each element of the group can be obtained as an ordered product of the generators

$$
\mathrm{W}=\mathrm{G}_{h}^{k_{h}} * \mathrm{G}_{h-1}^{k_{h-1}} * \ldots * \mathrm{G}_{3}^{k_{3}} * \mathrm{G}_{2}^{k_{2}} * \mathrm{G}_{1}
$$

GI - identity
G_{2}, G_{3}, G_{4} - primitive translations
$\mathrm{G}_{5}, \mathrm{G}_{6}$ - centring translations
G_{7}, G_{8}, \ldots - generate the rest of elements

Generation of trigonal and hexagonal groups

3	3
$\overline{3}$	$3, \overline{1}$
321	$3,2_{110}$
(rhombohedral coordinates	$\left.3{ }_{111}, 2_{10 \overline{1}}\right)$
312	$3,2_{1 \overline{1} 0}$
$3 m 1$	$3, m_{110}$
(rhombohedral coordinates	$\left.3_{111}, m_{10 \overline{1}}\right)$
$31 m$	$3, m_{1 \overline{1} 0}$
$\overline{3} m 1$	$3,2_{110}, \overline{1}$
(rhombohedral coordinates	$\left.32_{111}, 2_{10 \overline{1}}, \overline{1}\right)$
$\overline{3} 1 \mathrm{~m}$	$3,2_{1 \overline{1} 0}, \overline{1}$
6	$3,2_{z}$
$\overline{6}$	$3, m_{z}$
$6 / m$	$3,2_{z}, \overline{1}$
622	$3,2_{z}, 2_{110}$
6 mm	$3,2_{z}, m_{110}$
$\overline{6} \mathrm{~m} 2$	$3, m_{z}, m_{110}$
$\overline{6} 2 \mathrm{~m}$	$3, m_{z}, 2_{110}$
$6 / \mathrm{mmm}$	$3,2_{z}, 2_{110}, \overline{1}$

622

Generation of orthorhombic and tetragonal groups

Hermann-Mauguin symbol of crystal class	Generators G_{i} (sequence left to right)
1	1
$\overline{1}$	$\overline{1}$
2	2
m	m
$2 / m$	$2, \overline{1}$
222	$2_{z}, 2_{y}$
$m m 2$	$2_{z}, m_{y}$
$m m m$	$2_{z}, 2_{y}, \overline{1}$
4	$2_{z}, 4$
$\overline{4}$	$2_{z}, \overline{4}$
$4 / m$	$2_{z}, 4, \overline{1}$
422	$2_{z}, 4,2_{y}$
$4 m m$	$2_{z}, 4, m_{y}$
$\overline{4} 2 \mathrm{~m}$	$2_{z}, \overline{4}, 2_{y}$
$\overline{4} m 2$	$2_{z}, \overline{4}, m_{y}$
$4 / \mathrm{mmm}$	$2_{z}, 4,2_{y}, \overline{1}$

EXERCISES

Problem I. 5

Generate the space group P4mm using the selected generators

Compare the results of your calculation with the coordinate triplets listed under General position of the ITA data of P4mm

Compare the results of your calculations with the BCS data using the retrieval tools GENPOS (generators and general positions)

P4mm

 $C_{4 v}^{1}$P4mm
No. 99

4 mm
Tetragonal

Origin on 4 mm
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{2} ; \quad 0 \leq z \leq 1 ; \quad x \leq y$
Symmetry operations
(1) 1
(2) $20,0, z$
(3) $4^{+} 0,0, z$
(4) $4^{-} 0,0, z$
(5) $m x, 0, z$
(6) $m 0, y, z$
(7) $m x, x, z$
(8) $m x, x, z$

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity,
Coordinates
Wyckoff letter,
Site symmetry
$8 \quad g \quad 1$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) \bar{y}, x, z
(4) y, \bar{x}, z
(5) x, \bar{y}, z
(6) \bar{x}, y, z
(7) \bar{y}, \bar{x}, z
(8) y, x, z

SITE-SYMMETRY

GENERAL POSITION SPECIALWYCKOFF POSITIONS

Calculation of the Site-symmetry groups

$$
\begin{aligned}
& \text { Group P-I } \begin{array}{l}
\text { Positions } \\
\begin{array}{l}
\text { Multiplicity, } \\
\text { Wyckoff leter, } \\
\text { Site symmetry }
\end{array}
\end{array} \\
& \text { Coordinates } \\
& 2 \quad i \quad 1 \\
& \text { (1) } x, y, z \\
& \text { (2) } \bar{x}, \bar{y}, \bar{z} \\
& S=\left\{(W, w),(W, w) X_{o}=X_{o}\right\} \\
& \begin{array}{|c|}
\hline 1 / 2 \\
\hline 0 \\
\hline 1 / 2 \\
\hline-1 / 2 \\
\hline
\end{array} \\
& S_{f}=\left\{(1,0),(-I, 10 I) X_{f}=X_{f}\right\} \\
& S_{f} \simeq\{I,-I\} \\
& \text { isomorphic }
\end{aligned}
$$

EXERCISES

Problem I. 6

Consider the special Wyckoff positions of the the space group P4mm.

Determine the site-symmetry groups of Wyckoff positions la and 2 b . Compare the results with the listed ITA data

The coordinate triplets $(x, I / 2, z)$ and $(I / 2, x, z)$, belong to Wyckoff position 4 f . Compare their site-symmetry groups.

CONTINUED

Space group P4mm

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity,
Wyckoff letter,
Site symmetry
$8 \quad g \quad 1$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) \bar{y}, x, z
(4) y, \bar{x}, z
(5) x, \bar{y}, z
(6) \bar{x}, y, z
(7) \bar{y}, \bar{x}, z
(8) y, x, z

4	f	.m.	$x, \frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$
4	e	.m.	$x, 0, z$	$\bar{x}, 0, z$	$0, x, z$	$0, \bar{x}, z$
4	d	$\ldots m$	x, x, z	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z
2	c	$2 m m$.	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$		
1	b	$4 m m$	$\frac{1}{2}, \frac{1}{2}, z$			

EXERCISES

Problem 1.7

Consider the data given in ITA for the space group $P 4_{2} / m b c$, No. 135:
Generate the representatives of the General Position from the generators of the group. Starting from $\mathcal{T}_{\mathcal{G}}$, construct the chain of normal subgroups along which the space group $P 4_{2} / m b c$ is step-wise generated;
Determine the site-symmetry groups of the following Wyckoff positions: $4(a) ; 4(c) ; 4(d) ; 8(g)$. Construct the corresponding oriented site-symmetry symbols and compare them with those listed in ITA;
Characterize geometrically the isometries (3), (8), (12), (15) and (16) as listed under General Position. Compare the results with the corresponding geometric descriptions listed under Symmetry operations in ITA.

International Tables for Crystallography (2006). Vol. A, Space group 135, pp. 466-467.
$P 4_{2} / m b c \quad D_{4 h}^{13}$
$4 / \mathrm{mmm}$
Tetragonal
No. 135
$P 4_{2} / m 2_{1} / b 2 / c$

Origin at centre $(2 / m)$ at $4 / m 1 n$
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{2} ; \quad 0 \leq z \leq \frac{1}{4}$

Symmetry operations

(1) 1
(2) $20,0, z$
(3) $4^{+}\left(0,0, \frac{1}{2}\right) \quad 0,0, z$
(4) $4^{-}\left(0,0, \frac{1}{2}\right) \quad 0,0, z$
(5) $2\left(0, \frac{1}{2}, 0\right) \frac{1}{4}, y, 0$
(6) $2\left(\frac{1}{2}, 0,0\right) x, \frac{1}{4}, 0$
(7) $2\left(\frac{1}{2}, \frac{1}{2}, 0\right) x, x, \frac{1}{4}$
(8) $2 x, \bar{x}+\frac{1}{2}, \frac{1}{4}$
(9) $\overline{1} \quad 0,0,0$
(10) $m x, y, 0$
(11) $\overline{4}+0,0, z ; 0,0, \frac{1}{4}$
(12) $\overline{4}^{-} 0,0, z ; 0,0, \frac{1}{4}$
(13) $a x, \frac{1}{4}, z$
(14) $b \frac{1}{4}, y, z$
(15) $c \quad x+\frac{1}{2}, \bar{x}, z$
(16) $n\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \quad x, x, z$

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5) ;(9)$

Positions

Multiplicity,
Wyckoff letter,
Site symmetry
$16 \quad i \quad 1$
(1) x, y, z
(4) $y, \bar{x}, z+\frac{1}{2}$
(8) $\bar{y}+\frac{1}{2}, \bar{x}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(12) $\bar{y}, x, \bar{z}+\frac{1}{2}$
(9) $\bar{x}, \bar{y}, \bar{z}$
(13) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, z$
(16) $y+\frac{1}{2}, x+\frac{1}{2}, z+\frac{1}{2}$
(2) \bar{x}, \bar{y}, z
(3) $\bar{y}, x, z+\frac{1}{2}$
(10) x, y, \bar{z}
(7) $y+\frac{1}{2}, x+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(14) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z$
(11) $y, \bar{x}, \bar{z}+\frac{1}{2}$

Coordinates
(15) $\bar{y}+\frac{1}{2}, \bar{x}+\frac{1}{2}, z+\frac{1}{2}$

Reflection conditions

General:
$0 k l: k=2 n$
$h h l: l=2 n$
$00 l: l=2 n$
$h 00: h=2 n$
Special: as above, plus
no extra conditions
$h k l: l=2 n$
$h k l: h+k, l=2 n$

CO-ORDINATE TRANSFORMATIONS IN
 CRYSTALLOGRAPHY

General affine transformation

a change of basis from (\mathbf{a}, \mathbf{b}) to $\left(\mathbf{a}^{\prime}, \mathbf{b}^{\mathbf{\prime}}\right)$
a shift of origin from O to O' by a shift vector \boldsymbol{p} with components p_{1} and p_{2}

Change in the coordinates of the point X from (x, y) to ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$)

Problem: BASIS TRANSFORMATION

3-dimensional space

$(\mathbf{a}, \mathbf{b}, \mathbf{c})$, origin O : point $\mathrm{X}(x, y, z)$
$(P, p) \downarrow$
$\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)$, origin $\mathrm{O}^{\prime}:$ point $\mathrm{X}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

Transformation of symmetry operations (W, w):

$$
\left(W^{\prime}, w^{\prime}\right)=(P, p)^{-1}(W, w)(P, p)
$$

3-dimensional space

$(\mathbf{a}, \mathbf{b}, \mathbf{c})$, origin O : point $\mathrm{X}(x, y, z)$ $(\mathbf{P}, \boldsymbol{p}) \downarrow$
$\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)$, origin O^{\prime} : point $\mathrm{X}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$
(i) linear part: change of orientation or length

$$
\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \boldsymbol{P}
$$

$$
=(\mathbf{a}, \mathbf{b}, \mathbf{c})\left(\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{array}\right) \quad \begin{gathered}
\left(P_{11} \mathbf{a}+P_{21} \mathbf{b}+P_{31} \mathbf{c},\right. \\
P_{12} \mathbf{a}+P_{22} \mathbf{b}+P_{32} \mathbf{c}, \\
\left.P_{13} \mathbf{a}+P_{23} \mathbf{b}+P_{33} \mathbf{c}\right) .
\end{gathered}
$$

(ii) origin shift by a shift vector $\mathbf{P}\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)$:

$$
O^{\prime}=O+p
$$

the origin \boldsymbol{O}^{\prime} has
coordinates ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$) in the old coordinate system

Transformation of the coordinates of a point $X(x, y, z)$:

$$
\begin{array}{rlr}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) & =\boldsymbol{Q}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\boldsymbol{q} & \text { with } \\
& \begin{array}{l}
\boldsymbol{Q}=\boldsymbol{P}^{-1} \\
\boldsymbol{q}=-\boldsymbol{P}^{-1} \boldsymbol{p} .
\end{array} \\
& =\left(\begin{array}{l}
Q_{11} x+Q_{12} y+Q_{13} z+q_{1} \\
Q_{21} x+Q_{22} y+Q_{23} z+q_{2} \\
Q_{31} x+Q_{32} y+Q_{33} z+q_{3}
\end{array}\right) . &
\end{array}
$$

special cases

-origin shift:

$$
\boldsymbol{x}^{\prime}=\boldsymbol{x}-\boldsymbol{p}
$$

-change of basis :

$$
\boldsymbol{x}^{\prime}=\boldsymbol{P}^{-1} \boldsymbol{x}
$$

Transformation of symmetry operations (W,w):

Mapping of mappings
$\left(W^{\prime}, w^{\prime}\right)=(P, p)^{-1}(W, w)(P, p)$

Matrix formalism: 4×4 matrices

augmented matrices:

$\mathbb{W}=\left(\begin{array}{lll|l}W_{11} & W_{12} & W_{13} & w_{1} \\ W_{21} & W_{22} & W_{23} & w_{2} \\ W_{31} & W_{32} & W_{33} & w_{3} \\ \hline 0 & 0 & 0 & 1\end{array}\right), \quad \mathbb{x}=\left(\begin{array}{c}x \\ y \\ z \\ \frac{z}{1}\end{array}\right) ; \quad \mathbb{x}^{\prime}=\left(\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ \hline 1\end{array}\right)$

$$
\mathbb{x}^{\prime}=\mathbb{Q} \mathbb{X}=\mathbb{P}^{-1} \mathbb{X}
$$

$$
\mathbb{W}^{\prime}=\mathbb{Q} \mathbb{W} \mathbb{P}=\mathbb{P}^{-1} \mathbb{W} \mathbb{P}
$$

Problem: SYMMETRY DATA ITA SETTINGS

530 ITA settings of orthorhombic and monoclinic groups

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

MONOCLINIC SYSTEM

SYMMETRY DATA:ITA SETTINGS

Monoclinic descriptions

	Transf.	abc	cba	abc	baç	abc	$\overline{\mathrm{a}} \mathrm{cb}$	Monoclinic axis b Monoclinic axis c Monoclinic axis a
HM	C2/c	C12/c1	A12/a1	A112/a	B112/b	B2/b11	$C 2 / c 11$	Cell type 1
		$A 12 / n 1$	$C 12 / n 1$	B112/n	A112/n	$C 2 / n 11$	$B 2 / n 11$	Cell type 2
		I12/a1	$I 12 / c 1$	I112/b	I112/a	$I 2 / c 11$	I2/b11	Cell type 3

Orthorhombic descriptions

No.	HM	abc	bā	cab	$\overline{\mathbf{c}} \mathbf{b a}$	bca	ā̄b
33	$P n a 2_{1}$	$P n a 2_{1}$	$P b n 2_{1}$	$P 2_{1} n b$	$P 2_{1} c n$	$P c 2_{1} n$	$P n 2_{1} a$

EXERCISES

Problem 2.1

Use the retrieval tools GENPOS (generators and general positions), WYCKPOS (Wyckoff positions and HKLCOND (reflection conditions) for accessing the space-group data. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA.

Consider the General position data of the space group Im-3m (No. 229). Using the option Non-conventional setting obtain the matrix-column pairs of the symmetry operations with respect to a primitive basis, applying the transformation $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=1 / 2(-a+b+c, a-b+c, a+b-c)$

CRYSTAL-STRUCTURE DESCRIPTIONS

Inorganic Crystal Structure Database

$\left.\begin{array}{l}\text { CC=45520 } \\ \hline \text { Title } \\ \hline \text { Redetermination of the oxygen parameters in zircon (Zr Si O4). } \\ \hline \text { Authors } \\ \hline \text { Krstanovic, I.R. } \\ \hline \text { Reference } \\ \hline\end{array} \begin{array}{l}\text { Acta Crystallographica (1958) 11, 896-897 } \\ \text { Link XRef SCOPUS SCIRUS Google }\end{array}\right]$

lattice
parameters
space group

asymmetric-unit data

EXERCISES

Problem 2.2

Print 2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type: ***Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol***.

CC=45520
Title
Redetermination of the oxygen parameters in zircon (Zr Si O4).

EXERCISES

Problem 2.2

Structure I: Space group 14//amd, No. I4 I origin choice I at $\overline{4} m 2$
$\mathrm{a}=6.60 \AA \quad \mathrm{c}=5.88 \AA$
$Z r$:(a) $0,0,0 ; 0, \frac{1}{2}, \frac{1}{4} ; \frac{1}{2}, 0, \frac{3}{4} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$;
$S i:(b) 0,0, \frac{1}{2} ; 0, \frac{1}{2}, \frac{3}{4} ; \frac{1}{2}, 0, \frac{1}{4} ; \frac{1}{2}, \frac{1}{2}, 0$;
$O:(h)(0, u, v ; 0, \bar{u}, v ; u, 0, \bar{v} ; \bar{u}, 0, \bar{v}$; $\left.\bar{u}, \frac{1}{2}, v+\frac{1}{4} ; u, \frac{1}{2}, v+\frac{1}{4} ;\right)$ [and t $u=0.20 ; v=0.34$

Problem 2.2

Structure 2: Space group 14 //amd, No. I4I origin choice 2 at $2 / m$ at $0,-1 / 4,1 / 8$ from $\overline{4} m 2$ $\mathrm{a}=6.6164 \AA \mathrm{c}=6.015 \AA$

Coordinate

 transformation$$
p=0,-\mathrm{I} / 4, \mathrm{I} / 8
$$

(i) What are the new coordinates of the $Z r$ atoms?
(ii) What are the new coordinates of the $S i$ atoms?
(iii) What are the new coordinates of the O atom at $0, u, v$?
(iv) What are the new coordinates of the other O atoms?

Problem 2.2

Coordinate transformation
primitive basis description

$$
\mathbf{a}^{\prime}=\mathbf{a} ; \mathbf{b}^{\prime}=\mathbf{b} ; \mathbf{c}^{\prime}=\frac{1}{2}(\mathbf{a}+\mathbf{b}+\mathbf{c})
$$

(v) What are the new coordinates of the first $Z r$ atom?
(vi) What are the new coordinates of the first $S i$ atom?
(vii) What are the new coordinates of the O atom originally a
(viii) What are the lattice parameters of the primitive unit cell

Problem 2.2

SOLUTION

Origin 2 description $\quad \boldsymbol{x}=\boldsymbol{x}-\boldsymbol{p}$
(i) $Z r:$ (a) $0, \frac{1}{4}, \frac{\overline{1}}{8} \sim \frac{7}{8} ; 0, \frac{3}{4}, \frac{1}{8} ; \frac{1}{2}, \frac{1}{4}, \frac{5}{8} ; \frac{1}{2}, \frac{3}{4}, \frac{3}{8}$;
(ii) $S i$: (b) $0, \frac{1}{4}, \frac{3}{8} ; 0, \frac{3}{4}, \frac{5}{8} ; \frac{1}{2}, \frac{1}{4}, \frac{1}{8} ; \frac{1}{2}, \frac{3}{4}, \frac{\overline{1}}{8} \sim \frac{7}{8}$;
(iii) $O:(h) 0,0.20+0.25,0.34-0.125=0,0.45,0.215$.
the rest of oxygen atoms
$0,0.05,0.215 \quad 0.20,0.25,0.535 \quad 0.80,0.25,0.535 \quad 0,0.95,0.785$ $0,0.55,0.785 \quad 0.80,0.75,0.465 \quad 0.20,0.75,0.465$, all also with $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+$.

$$
0,0.0167,0.198
$$

Problem 2.2

SOLUTION

primitive basis description

$$
\begin{aligned}
& \boldsymbol{P}=\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 1 / 2
\end{array}\right) \quad \boldsymbol{P}^{-1}=\left(\begin{array}{ccc}
1 & 0 & \overline{1} \\
0 & 1 & \overline{1} \\
0 & 0 & 2
\end{array}\right) \\
& \boldsymbol{x}^{\prime}=\boldsymbol{P}^{-1} \boldsymbol{x}
\end{aligned}
$$

(v) The new coordinates of the first $Z r$ atom are $0-\frac{7}{8}, \frac{1}{4}-\frac{7}{8}, 2 \cdot \frac{7}{8} \sim \frac{1}{8}, \frac{3}{8}, \frac{3}{4}$.
(vi) The new coordinates of the first $S i$ atom are $0-\frac{3}{8}, \frac{1}{4}-\frac{3}{8}, 2 \cdot \frac{3}{8} \sim \frac{5}{8}, \frac{7}{8}, \frac{3}{4}$.
(vii) The new coordinates of the first O atom are $0-0.215,0.45-0.215,2 \cdot 0.215 \sim 0.785,0.235,0.430$.

Structure Utilities

Structure Utilities

Transform Unit Cells
Strain Tensor Calculation
Assignment of Wyckoff Positions
Transform structures to lower symmetry Space Group basis.
Alternative Settings for a given Crystal Structure
Equivalent Descriptions for a given Crystal Structure

Problem: ALTERNATIVE SETTINGS

ITA-settings for the space group C2/c (No.l5)

Choose the initial and final space groups symbols
in matrices must be read by columns. \mathbf{P} is the transformation from standard to non-
$(\mathrm{a}, \mathrm{b}, \mathrm{c})_{\mathrm{n}}=(\mathrm{a}, \mathrm{b}, \mathrm{c})_{\mathrm{s}} \mathrm{P}$

Initial	Final	Setting	P	P
r	r	C $12 / c 1$	a,b,c	a,b,c
r	r	A $12 / \mathrm{n} 1$	-a-c, b,a	c,b,-a-c
r	r	112/a 1	c,b,-a-c	-a-c,b,a
r	r	A 12/a 1	c,-b,a	c,-b,a
r	r	C $12 / n 1$	a,-b,-a-c	a,-b,a-c
r	r	$112 / c 1$	-a-c,-b,c	-a-c,-b,
r	r	A 11 2/a	c,a,b	b,c,a
r	r	B112/n	$\mathrm{a}, \mathrm{a}-\mathrm{c}, \mathrm{b}$	a,c,-a-b
r	r	$1112 / b$	-a-c,c,b	-a-b,c,b
r	r	B112/b	a,c,-b	$\mathrm{a}, \mathrm{c}, \mathrm{b}$
r	r	A 11 2/n	-a-c,a,-b	b,-c,-a-b
r	r	1112/a	c,-a-c,-b	-a-b,-c,a
r	r	B2/b 11	b,c,a	c,a,b

Problem: STRUCTURE TRANSFORMATION

Transform Structure

Transform Structure

TRANSTRU can transform a structure in two ways:

- To a lower symmetry space group. The transformed structure is given in the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.
- With an arbitrary matrix. The structure, including the cell parameters and the atoms in the unit cell, is transformed with an arbitrary matrix introduced by the user.

Transform structure to a subgroup basis
Transform structure with an arbitrary matrix

Problem: UNIT CELL CELLTRAN TRANSFORMATION

Transform Unit Cell

Transform Unit Cell

Given the cell parameters (separated with spaces), the centring and a transformation matrix the program calculates:

- The transformed unit cell.
- The primitive unit cell.
- The reduced unit cell.
- The metric tensors for each cell.
- The standard root tensor (transformation from the conventional to a cartesian basis)

Cell

Parameters:
444909090
Centering
Please, define the transformation matrix that relates the group and the subgroup bases

EXERCISES

Problem 2.2 (cont)

Repeat the calculations of Problem 2.2 applying the corresposponding tools of the Bilbao Crystallographic server. Compare the results.

Problem: STRUCTURE VISUALIZATION
 VISUALIZE

Visualize with Jmol

Visualize structures with Jmol

Visualize structures using Jmol. Jmol is an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

Structure visualization

View Structure (with Jmol applet)

Structure visualization

View Structure (with Jmol applet)

Subperiodic groups: rod and layer groups

Rod groups: 3dim groups with I dim translations
polymeric molecules nanotubes uniform magnetic field to bulk crystals
bicrystals interfaces domain walls thin films

Layer groups: 3dim groups with 2dim translations

Databases for subperiodic groups

International Tables for
Crystallography, Volume
E: Subperiodic groups

generators

general postitions Wyckoff positions

Data on maximal subgroups
(Aroyo \& Wondratschek)
maximal subgroups of index 2,3 and 4
series of isomorphic subgroups

Retrieval tools

