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1.  In a phase transition, not all symmetry-breaks are equally possible!  
 
Isotropy Subgroups 
 
The Landau theory of symmetry-breaking structural phase transitions is based on the 
basic postulate that the symmetry break taking place in such transitions is due to the 
condensation (i.e. the change from zero to a non-zero amplitude) of one or a set of 
collective degrees of freedom that transform according to a single irreducible 
representation (irrep) of the space group of the high-symmetry phase (the so-called 
active irrep). These amplitudes {Qi, i=1,…,n} that become spontaneously non-zero in 
the low-symmetry phase, constitute the so-called order parameter, and the n-
dimensional irrep describing its transformation properties is usually called the active 
irrep of the transition. 
 
 Although Landau theory may not reproduce accurately the thermodynamic 
behaviour close to the transition points, its symmetry aspects and resulting restrictions 
are of much general validity. Its basic postulate of a single active irrep is fulfilled in 
most cases by group-subgroup phase transitions, even if they are discontinuous (for 
which its validity is not ensured). 
 
 That the symmetry change in a transition is fully determined by a single active 
irrep, independently of the condensation of other degrees of freedom, is a very 
restrictive condition, which can be very powerful in the analysis and prediction of the 
structural and symmetry properties of these systems. 
 
  
           Basic problem to solve: we know the high symmetry group and the active irrep, 
and we want to know the possible symmetries of the low symmetry phase. 

 
 

 
 
          Let us call G the space group of the high-symmetry phase, and τ the (n-
dimensional) active irrep for a certain low-symmetry phase, and let be Q=(Q1,…,Qn) the 
n-dimensional order parameter transforming according to the irrep τ. By definition, if an 
operation g of the space group G is applied to the low-symmetry distorted structure, the 
amplitudes Q=( Q1,…,Qn) will change/transform according to the irrep τ: 



 
                                    Tτ(g) Q = Q’                              (1) 
 
where the Tτ(g) is the nxn matrix associated by the irrep τ to the operation g. The system 
will keep the operation g among its symmetry operations, i.e. g will belong to the low-
symmetry distorted phase, if the system is undistinguishable after the operation is 
applied, i.e. Q’=Q. 
 
Hence, all possible space groups, H (subgroups of G), for the low-symmetry phase, 
resulting from an active irrep τ, can be obtained from the condition that the space group 
operations h belonging to H should fulfill: 
 
                                    Tτ(h) Q = Q                              (2) 
 
The possible subgroups of G, H, that can satisfy this invariance equation, and therefore 
be the symmetry of a distorted phase with τ as active irrep, are usually called isotropy 
subgroups (for the irrep τ). 
 
        The “lost” operations g, such that: 
 
                                Tτ(g) Q = Q’ ≠ Q                      (3) 
 
transform the structure into configurations which are distinguishable from the original 
one, but energetically equivalent, and represent domain-related structures.  
  
In the case of a 1-dim irrep, eq. (2) is rather trivial, and only a single isotropy subgroup 
exists. It is formed by all operations of G for which Tτ(g)=1.  The symmetry of the low-
symmetry phase is therefore fully determined by the 1-dim irrep, and very simple to 
derive.  
 
 Let us consider for instance the example of a material having I4/mmm symmetry 
and consider the possible phase transitions/symmetry breaks that the material can suffer, 
without changing its unit cell, i.e. without loosing any lattice translation.  
 
           By definition, the matrix Tτ({E,l}) associated to a lattice translation {E,l} by an 
irrep τ is a diagonal matrix of the form: 
     

                                  
 
where {k1,…ks} are the wave vectors of the star of the irrep. Therefore, according to eq. 
(2), if we want all lattice translations {E,l} maintained in the isotropy subgroup, the 



wave vectors ki should be zero, i.e. the active irrep should have null wave vector, or in 
other words correspond to the point Γ of the Brillouin zone. 
 
 The irreps of a space group at the Brillouin zone center are equivalent to those of 
the corresponding point group. The lattice translations have associated identity 
operators. We get then to the irreps of I4/mmm at the Γ point by looking at the irreps of 
the point group 4/mmm in the program POINT of this server: 
 
        
   Table 1: Character table of the irreps of the point group 4/mmm obtained with                 
the server tool POINT 
 

Character Table 

D4h(4/mmm) # 1 2 4 2h 2h' -1 mz -4 mv md functions 

Mult. - 1 1 2 2 2 1 1 2 2 2 _ 

A1g Γ1
+ 1 1 1 1 1 1 1 1 1 1 x2+y2,z2 

A2g Γ2
+ 1 1 1 -1 -1 1 1 1 -1 -1 Jz 

B1g Γ3
+ 1 1 -1 1 -1 1 1 -1 1 -1 x2-y2 

B2g Γ4
+ 1 1 -1 -1 1 1 1 -1 -1 1 xy 

Eg Γ5
+ 2 -2 0 0 0 2 -2 0 0 0 (xz,yz),(Jx,Jy) 

A1u Γ1
- 1 1 1 1 1 -1 -1 -1 -1 -1 _ 

A2u Γ2
- 1 1 1 -1 -1 -1 -1 -1 1 1 z 

B1u Γ3
- 1 1 -1 1 -1 -1 -1 1 -1 1 _ 

B2u Γ4
- 1 1 -1 -1 1 -1 -1 1 1 -1 _ 

Eu Γ5
- 2 -2 0 0 0 -2 2 0 0 0 (x,y) 

 
  
 To determine the space groups resulting from each 1-dim irrep acting as active 
irrep, we have just to keep the operations with character 1: 
 
Table 2: Isotropy subgroups of I4/mmm for onedimensional irreps with k=0 
irrep Operations conserved Isotropy subgroup 
A1g all operations I4/mmm 
A2g 1, 2z, 4z, -1, mz, -4 I4/m 
B1g 1, 2z, 2h (2x, 2y), -1, mz, mv (mx, my) Immm 
B2g 1, 2z, 2h’ (2xy, 2x-y), -1, mz, md (mxy, mx-y) Fmmm 
A2u 1, 2z, 4z, mh(mx, my), md(mxy,mx-y) I4mm 
B1u 1, 2z, 2h (2x, 2y), -4, md(mxy, mx-y) I-42m 
B2u 1, 2z, 2h’(2xy, 2x-y), -4, mv (mx, my) I-4m2 
 
 



The irrep A1g is trivial and does not break the symmetry. We have taken into account 
that the columns in Table 1 correspond to equivalence classes with several operations. 
The lattice is labelled as F in the case of the irrep B2g, despite that the lattice is not 
changed, because in this case the operations of the orthorhombic group mmm are 
defined along the diagonal directions on the plane xy of the tetragonal I lattice. The I 
lattice described in a unit cell with (110) and (-110) as basic translations becomes an F 
lattice. 
 
Table1 contains a final column, headed with “functions”, which contains useful 
additional information. It lists functions of the coordinates x,y,z of a polar vector, or the 
coordinates Jx, Jy and Jz, of an axial vector, that transform according to the 
corresponding irrep. For instance, the product xy transforms according to the irrep B2g. 
But a shear strain εxy of the crystal transforms as a function xy. Therefore a shear strain 
εxy is a crystal magnitude of the I4/mmm crystal transforming according to B2g, and 
could be the order parameter for a phase transition I4/mmm --- Fmmm, i.e. a proper 
ferroelastic transition, with a switchable spontaneous strain. 
 
In general irreps of dimension n > 1 have more than one isotropy subgroup depending 
on the direction taken by the order parameter Q within its n-dimensional space. 
 
In our example, we have two 2-dim irreps, Eg and Eu. Let us consider the irrep Eg, 
whose matrices can be chosen in the following form (it straightforward to derive them 
from the fact that they should correspond to the transformation properties of the pair of 
functions xz, yz): 
 
Table 3: matrices of the irrep Eg of the point group 4/mmm, for a certain choice of the 
basis in the irrep space. 
 1,-1 2z, mz 4z+, -4z+ 4z-, -4z- 2x, mx 2y, my 2xy, mxy 2x-y, mx-y 
Eg 1 0 

0 1 
-1 0 
0  -1 

0  -1 
1  0 

0  1 
-1 0 

-1  0 
0   1 

1  0 
0  -1 

0  -1 
-1  0 

0  1 
1  0 

 
As the inversion -1 has associated the identity matrix, operations g and -1.g have the 
same matrix. Identity and inversion will always fullfill eq. (2) and operations 2z, mz, 
4z+, -4z+, 4z- and -4z- will never fullfill it, independently of the direction of Q. The 
conservation of the other operations depends on the direction of Q. For instance if we 
consider that the Eg order parameter is of the form (0,Q), i.e. takes the direction (0,1) in 
the irrep space, 2x and mx will be conserved in the distorted structure, and the resulting 
isotropy subgroup is P2/m11.  
 
It is easy to check, considering the matrices above that the whole set of possible 
isotropy subgroups for Eg, depending on the order parameter direction, are: 
 
Table 4: Isotropy subgroups of the irrep Eg of I4/mmm, depending on the direction 
within the irrep space 
direction operations space group 
(0,1) 1, 2x, -1, mx C2/m (-b-c, a, c ; 0 0 0) 
(1,0) 1, 2y, -1, my C2/m (-a-c, b, c; 0 0 0) 
(1,1) 1, 2xy, -1, mxy C2/m  (a-b+c, a+b, c; 0 0 0) 
(-1,1) 1, 2x-y, -1, mx-y C2/m ( a+b+c, -a+b, c; 0 0 0 
arbitrary 1,-1 P-1 (a, b, a/2+b/2+c/2; 0 0 0) 



  
The I centred unit cell must be transformed to a C centred cell for the monoclinic space 
groups and to a primitive unit cell for the tricilinic one, if expressed in a conventional 
setting.  The b-axis is the monoclinic unique axis in the conventional setting used. The 
lattice does not change, it is only expressed in a conventional unit cell consistent with 
the direction of the monoclinic axis. 
 
The directions (0,1) and (1,0) for the order parameter are equivalent: they correspond to 
domain related directions. The four equivalent order parameter values obtained by 
applying the matrices of the lost operations are {(Q,0), (0,Q), (-Q,0), (0,-Q)}. This 
means mathematically that the isotropy subgroups corresponding to the order parameter 
directions (0,1) and (1,0) belong to the same conjugacy class. 
 
In general the number of domain-related configurations is equal to the index of the 
subgroup (4 in this case). Similarly for the solutions of type (1,1), there are four 
equivalent order parameter directions {(a,a), (-a,a), (-a,-a), (a,-a)}.  
We have then three possible isotropy subgroups for the irrep Eγ, which are not 
equivalent: C2/m (with monoclinic axis along x or y), C2/m (with monoclinic axis 
along the oblique directions (110) or (1-10) ) and P-1. 
 
With a a similar analysis for Eu we can complete the set of isotropy subgroups of 
I4/mmm for irreps with k=0:  
 
Table 5: Non-equivalent isotropy subgroups of I4/mmm for irreps with k=0 

 
irrep Isotropy  subgroup 
A1g I4/mmm 
A2g I4/m 
B1g Immm 
B2g Fmmm 
A2u I4mm 
B1u I-42m 
B2u I-4m2 
Eg C2/m 

C2/m 
P-1 

Eu Imm2 
Fmm2 
Cm 

 
It is interesting to compare this table with the set of all subgroups of I4/mmm that 
maintain the lattice, which can be obtained with the program CELLSUB of the Bilbao 
Crystallographic Server. 
 
The program CELLSUB: 
 CELLSUB lists all possible subgroups of a given space group for a given k-
index (or for a k-index smaller than a certain value). The program lists first the space 
group types, and then, for each space group type, it can distinguish the different 
conjugacy classes.  The k-index ik is the “klassengleich” index, and indicates the 
multiplication factor relating the volume of the primitive cell of the subgroup with 



respect to the primitive cell of the original structure. Thus, ik=1 implies conservation of 
the primitive unit cell, and therefore of the whole lattice. 
              For ik= 1, CELLSUB lists for I4/mmm the following subgroups: 
        
 
 
 
Table 6: Subgroups of I4/mmm with ik=1 

 
 
Clicking over each of them we can see the non-equivalent subgroups of each type. Thus 
for C2/m, we obtain: 
 
Table 7: Conjugacy classes of subgroups of I4/mmm of type C2/m with index ik=1 

 



 
 

There are therefore 3 conjugacy classes of space groups of type C2/m. Classes 2 and 3 
in the list correspond to the two non-equivalent isotropy subgroups discussed above. On 
the other hand, class 1 has the monoclinic axis along the z direction of the tetragonal 
setting, and it is not an isotropy subgroup. (Warning: the ordering and numbering of 
the classes done by the program is not fixed. Different runs can order the classes 
differently!) 
 
Inspecting the classes for all subgroup types, the number of non-equivalent subgroups 
with ik=1 is then 26, while the number of non-equivalent isotropy subgroups is only 13. 
 
 Therefore, not all subgroups of I4/mmm compatible with its lattice can be 
reached through a phase transition with a single active irrep, as demanded by the 
Landau postulate. The Landau postulate restricts the number of possible symmetries to 
13 of the 26 possible subgroups. 
 
 The restriction of the possible symmetry break to only isotropy subgroups is 
very demanding, and can provide very valuable information. For instance, if a 
symmetry change between two phases does not comply with this condition, it indicates 
that the distorted phase contains at least two active irreps, i.e. the symmetry break can 



only be explained considering at least two different order parameters transforming 
according to different irreps. It will therefore be highly probable that a sequence of   
at least two phase transitions will exist, due to the separate condensation of the two 
order parameters, and an intermediate phase is most likely (see below for an example). 
 
            Some predictive power about the phase diagram of a compound or that of 
similar compounds can be achieved from the knowledge of the isotropy subgroups of a 
certain irrep.  If a mutidimensional irrep is known to be active in a certain material, it 
may exhibit several phases with different symmetries corresponding to different 
isotropy subgroups of this active irrep, depending on the thermodynamic stabilization of 
the order parameter along different directions. Similarly, if the same irrep is active in a 
family of isomorphous compounds, the distorted symmetries observed in different 
compounds may be different, but will correspond to different isotropy subgroups of the 
same irrep. 
 
 Let us consider for instance the example of the perovskites. Perovskites are 
known to have an intrinsic instability due to the softness of three degenerate rigid unit 
modes (modes tilting the octahedral framework and keeping the BX6 octahedra 
approximately rigid), which transform according to the 3-dim irrep R4+ of the parent 
symmetry Pm-3m.  The isotropy subgroups of Pm-3m for irrep R4+ are the following: 
 
Table 8:  Isotropy subgroups of Pm-3m for irrep R4+ 

 
 
In this list, the last triad for each space group indicates the restricted direction of the 
order parameter in its 3-dim space. For each of the possible isotropy subgroups, we 
have listed one perovskite compound that is known to have this symmetry in one 
particular phase. One can see that any of the possible symmetries is realized in some 
perovskite compound, except the lowest one, which corresponds to an arbitrary 
direction of the order parameter. 
 
 There are perovskites, as CeAlO3, where the following phase transition sequence  takes 
place as temperature is increased: 
 
               I4/mcm --- Imma ---- R-3c ----- Pm3m 
 
Thus, the system is changing the direction of its R4+ order parameter from one phase to 
the next, through first-order phase transitions, yielding symmetries given by different 
isotropy subgroups of the list above.  
 
 



The determination by hand of the isotropy subgroups for a given irrep is time 
consuming and tedious. The Bilbao Crystallographic Server does not have a tool to do 
this job directly, but the isotropy subgroup are listed (with some restrictions) in the 
book: 
 
H. T. Stokes and D. M. Hatch,  
Isotropy Subgroups of the 230 Crystallographic Space Groups  
(World Scientific, Singapore, 1988).  
 
or they can be obtained automatically using the program ISOTROPY (H. T. Stokes, D. 
M. Hatch, and B. J. Campbell, (2007), stokes.byu.edu/isotropy.html) , or some 
accompanying programs, all available in http://stokes.byu.edu/isotropy.html 
 
The use of ISOTROPY requires getting familiar with some specific program 
commands, which are necessary for running the program. A more direct form to get the 
information about the isotropy subgroups is to run the associated programs 
INVARIANTS or ISODISPLACE, which are more user-friendly, and can be executed 
by filling some self-evident menus. These two programs yield the list of isotropy 
subgroups of a chosen irrep as a preliminary result. The information is more complete in 
ISODISPLACE, but running this program, requires the ntroduction of some structure 
for the high-symmetry phase (which can be a fake one, since for deriving the list of 
isotropy subgroups the structure is not used at all). 
 
Some variations on the same problem: 
 In many practical cases, we ignore the active irrep of the transition, but we may 
know some restrictive conditions on the symmetry of the distorted phase, which can be 
sufficient for deriving a restricted set of possible space groups H, and possible active 
irreps.  
 
 Let us consider as an example a real case. Recently crystals that include both 
molecules of fullerene and cubane have been synthetized. They are known to crystallize 
at high temperatures in the Fm-3m space group with the disordered fullerenes centred at 
the site 4a (0 0 0) and disordered cubane molecules at 4b (½  ½ ½) (Nature Mat. 4, 764 
(2005)).  At low temperature the system exhibits a couple of phase transitions, as the 
molecules become ordered. From powder diffraction experiments, the symmetry of the 
final phase has been reported to be a primitive orthorhombic structure, with its lattice 
parameters satisfying the approximate relations a and b ≈ ac/√2, while c ≈ 2c, but its 
space group, and therefore its structure could not be determined (J. Phys. Chem B 113 
2042 (2009)).  Obviously, if we could restrict the symmetry of this phase to a minimal 
set of possible/probable space groups, we could have a better chance for succeeding in 
the interpretation and analysis of the diffraction diagram of this phase. 
 
We can start by determining all possible primitive orthorhombic subgroups of Fm-3m, 
fulfilling the unit cell relation that has been observed. We can use for that CELLSUB, 
provided that we know the k-index of the subgroup we are searching. This index can be 
derived in a straightforward manner comparing the volumes of the primitive unit cell of 
the two space groups:  
 
Fm3m: ac

3/4 
Orthorhombic phase: ac

3 



 
This means, the orthorhombic space group keeps only ¼ of the lattice translations, or in 
other words the primitive orthorhombic unit cell contains 4 formula units, while the Fm-
3m structure only one.  Hence ik= 4.  The point group of the searched orthorhombic 
space groups can be 222, mm2 or mmm. To simplify the example, we are going to 
assume that this point group symmetry is the maximal mmm (but we could proceed 
similarly with the other two possible point groups). 
 
 Restricted for ik=4, point group mmm, and no centring, CELLSUB lists a quite 
long list of subgroups: 
 

Table 9: Subgroups (types) of Fm-3m with point group mmm, ik=4 and no centring. 

N HM Symbol ITA index t-index k-index More info 

1 Pnma 062 24 6 4 show... 

2 Pbca 061 24 6 4 show... 

3 Pbcn 060 24 6 4 show... 

4 Pmmn 059 24 6 4 show... 

5 Pnnm 058 24 6 4 show... 

6 Pbcm 057 24 6 4 show... 

7 Pccn 056 24 6 4 show... 

8 Pbam 055 24 6 4 show... 

9 Pcca 054 24 6 4 show... 

10 Pmna 053 24 6 4 show... 

11 Pnna 052 24 6 4 show... 

12 Pmma 051 24 6 4 show... 

13 Pban 050 24 6 4 show... 

14 Pccm 049 24 6 4 show... 

15 Pnnn 048 24 6 4 show... 

16 Pmmm 047 24 6 4 show... 
 

But not all of them will have unit cell parameters consistent with the experimental 
values. By clicking on “show” we get the different non-equivalent classes of subgroups 
of this type. For instance, for Pbca, there is a single class as shown by the output of 
CELLSUB (warning: the ordering of the classes is not fixed, and different runs of the 
program will yield in general different orderings): 



Table 10: conjugacy classes of subgroups of Fm-3m of type Pbca 
Classification of the subgroups of type Pbca(61) of group Fm-3m(225) with index 24 

For the group G = Fm-3m there are 2 different subgroups Hj isomorphic to H = Pbca of index 
24. These subgroups are distributed in 1 class of conjugate subgroups with respect to the group 
G.  
In the tables below each table corresponds to one class. For each class are given the chains corresponding 
to the different subgroups in the class, and the obtained transformation matrices.  
The list with the chains and transformation matrices that give identical subgroups can be seen by clicking 
on the button in the column Identical of the table.  

 

Class 1 

Check Chain [indices] Chain with HM symbols Transformation Identical 

 1  225 139 069 064 
061 [3 2 2 2] 

Fm-3m > I4/mmm > 
Fmmm > Cmce > Pbca 

 

   0   0   1    0 
  -1   0   0    0 
   0  -1   0    0 

  
 

 2  225 139 069 064 
061 [3 2 2 2] 

Fm-3m > I4/mmm > 
Fmmm > Cmce > Pbca  

   0   1   0    0 
  -1   0   0    0 
   0   0   1    0   

 

 
The transformation matrix relating the two groups is then (-b,-c,a; 0 0 0) or equivalent 
ones, with the unit cell parameters coinciding with those of the cubic cell. Therefore this 
space group can be discarded. 

On the other hand, if we consider subgroups of type Pnma, there are four classes of 
Pnma subgroups, and one of these classes is listed as: 

Table 11: One of the conjugacy classes of subgroups of Fm-3m of type Pnma 
 

Check Chain [indices] Chain with HM 
symbols Transformation Identical 

 31  225 139 137 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P42/nmc > Pmmn > 
Pnma  

   0  1/2  1/2   1/4 
   2   0   0       3/4 
   0  1/2 -1/2   1/2   

 

 32  225 139 071 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
Immm > Pmmn > 
Pnma  

   0  1/2  1/2   1/4 
   0 -1/2  1/2    0 
   2   0   0       3/4 

  
 

 33  225 139 137 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P42/nmc > Pmmn > 
Pnma  

   0  1/2 -1/2   1/2 
   0  1/2  1/2   1/4 
   2   0   0       1/4 

  
 

 34  225 139 137 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P42/nmc > Pmmn > 
Pnma  

   0  1/2 -1/2   1/2 
   0  1/2  1/2   1/4 
   2   0   0       3/4 

  
 



 35  225 139 137 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P42/nmc > Pmmn > 
Pnma  

   0  1/2  1/2   1/2 
   0 -1/2  1/2   1/4 
   2   0   0       1/4 

  
 

 36  225 139 129 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P4/nmm > Pmmn > 
Pnma  

   2   0   0       3/4 
   0  1/2 -1/2   1/4 
   0  1/2  1/2    0 

  
 

 37  225 139 071 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
Immm > Pmmn > 
Pnma  

   2   0   0       3/4 
   0  1/2  1/2   1/4 
   0 -1/2  1/2    0 

  

 

 38  225 139 137 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P42/nmc > Pmmn > 
Pnma  

   2   0   0       1/4 
   0  1/2 -1/2   1/2 
   0  1/2  1/2   1/4 

  

 

 39  225 139 137 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P42/nmc > Pmmn > 
Pnma  

   2   0   0      1/4 
   0  1/2  1/2   1/2 
   0 -1/2  1/2   1/4 

  
 

 40  225 139 129 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P4/nmm > Pmmn > 
Pnma  

   0  1/2  1/2    0 
   2   0   0      1/4 
   0  1/2 -1/2   1/4 

  
 

 41  225 139 129 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
P4/nmm > Pmmn > 
Pnma  

   0 -1/2  1/2    0 
   2   0   0       1/4 
   0  1/2  1/2   1/4 

  
 

 42  225 139 071 059 
062 [3 2 2 2] 

Fm-3m > I4/mmm > 
Immm > Pmmn > 
Pnma  

   0 -1/2  1/2    0 
   2   0   0        3/4 
   0  1/2  1/2   1/4   

 

 

The parameters of the Pnma orthorhombic cell for this class are therefore a=2ac, b= 
c=ac/√2, which are consistent with the orthorhombic cell observed, if a permutation of 
the parameter labels is done. 

Inspecting the classes for all the subgroups in the list, it is straightforward to conclude 
that only six symmetries Pnma, Pmmn, Pccn, Pmma, Pccm and Pmmm with 
transformations matrices listed below (or equivalent), are consistent with the 
experimental observation.  

Table 12: Possible centrosymmetric orthorhombic subgroups of Fm-3m fulfilling the 
lattice metrics observed in the orthorhombic phase of fullerene-cubane crystals. 
 

Pnma (2a, b/2+c/2, -b/2+c/2; ¾, ¼ , 0) 
Pmmn (a/2-b/2, a/2+b/2, 2c; ¼ , 0, ¾) 
Pccn (a/2-b/2, a/2+b/2, 2c; ¼ , 0, ¾) 
Pmma (2a, b/2+c/2, -b/2+c/2; ½ , 0 , 0) 
Pccm (a/2-b/2, a/2+b/2, 2c; 0, 0, 1/2) 



Pmmm (a/2-b/2, a/2+b/2, 2c; 0, 0, 0) 
 

This list could be further reduced if we assume that the searched symmetry should 
correspond to an isotropy subgroup (see exercise 2 below), i.e. an active irrep can 
explain the corresponding symmetry break, but this lead us into a new type of problem, 
which we treat in the following section. 

Exercise 1: A structure has symmetry Pnma. At lower temperatures, a phase transition 
happens, and diffraction experiments show that superstructure reflections at points (h, k, 
l+ ½) appear, indicating the duplication of the c parameter, while keepin an 
orthorhombic lattice. Assuming a group-subgroup related transition and using 
CELLSUB, predict the only possible space group of this low-temperature phase, and the 
transformation matrix relating it with the parent space group Pnma. 

 
2. The inverse Landau problem:  
 
      The problem: We know the symmetry break and we want to identify the 
active irrep 

 
 

From the discussion above, it should be clear that the most important information 
required for the characterization of a certain phase transition is the identification of its 
active irrep. In most cases it is sufficient to know the high and low space groups to 
identify it, but for some symmetry breaks this may not be sufficient. 
 
 The ISOTROPY website (stokes.byu.edu/isotropy.html) includes the program 
COPL, which does this identification, and also provides the irreps of all additional 
spontaneous secondary variables. 
 
         In the Bilbao Crystallographic Server, the program SYMMODES can also give 
this information as a by-product. 
 
Secondary spontaneous variables: 
 In the low symmetry phase, apart from the order parameter and quantities 
transforming according to the active irrep, variables or degrees of freedom transforming 
according to other irreps can also condense or become spontaneous. The only 
requirement is that they are compatible with the low-symmetry space group. This is the 
realization of the Von Neumann principle: any variable/degree of freedom compatible 
with the symmetry of the crystal is allowed and will therefore in general have a non-
zero value.  
 Using the concept of isotropy subgroup, we can say that any quantity with 
transformation properties given by an irrep having an isotropy subgroup containing the 
group H of the distorted phase will be spontaneous in the transition (i.e. it will change 
from zero to non-zero values in the distorted phase). Therefore, while the active irrep 



must have H as an isotropy subgroup, the irreps associated to spontaneous secondary 
variables have in general an isotropy subgroup which is a supergroup H.  
 
 Let us consider the following case: 
 
 
                         I4/mmm --------  C2/m  (-b-c, a, c ; 0 0 0) 
 
 From the example discussed above, we know that the active irrep for this symmetry 
change is Eg (k=0).  
 
          If introduce this symmetry change, including the transformation matrix, in the 
program COPL (stokes.byu.edu/isotropy.html), the following result is obtained: 
 
Table 13: Output of COPL for the symmetry break I4/mmm --- C2/m  (-b-c,a,c; 000) 
------------------------------------------------------------------------------------ 
COPL, Version 1.0, August 2001 
Written by Harold T. Stokes and Dorian M. Hatch 
Brigham Young University 
  
Parent: 139 D4h-17, I4/mmm, I4/m2/m2/m 
Subgroup:  12 C2h-3, C2/m, C12/m1, unique axis b, cell choice 1 
Lattice vectors: 
0 -1 -1 
1 0 0 
0 0 1 
origin: 0 0 0 
  
Irrep      Dir    Subgroup      Size 
GM1+  (a)    139 I4/mmm    1 
GM2+  (a)     71 Immm        1 
GM5+  (a,0)   12 C2/m         1 
----------------------------------------------------------------------------------- 
 
The program lists a set of irreps, a “direction” or subspace within the irrep space and 
their isotropy subgroup. The final column headed “size” indicates the multiplication of 
the primitiva unit cell of the corresponding isotropy subgroup relative to the parent 
high-symmetry space group (i.e. the klassengleiche index ik). 
 
 We have then the irrep GM5+ as the active irrep with the actual observed 
symmetry as isotropy subgroup, and then a secondary irrep GM2+ with an isotropy 
subgroup Immm, which necessarily must be a supergroup of C2/m. In addition, the 
trivial irrep GM1+ always appear as possible symmetry of secondary variables that are 
allowed to have non-zero values both at the distorted phase, and also at the parent 
phase. The label GM is being used to indicate that they are irreps at the Brillouin zone 
centre (Gamma point)), as the translational symmetry is not broken.  GM5+ must be the 
irrep labelled Eg in the Table above, while GM2+ should be the irrep labelled above as 
B1g. 
 



 The reason for the existence of secondary spontaneous quantities transforming 
according to the irrep B1g becomes obvious if we use SUBGROUPGRAPH or 
CELLSUB to construct the graph of minimal subgroups connecting the two end space 
groups: 
 
Figure 1: Graph of minimal subgroups connecting the space group I4/mmm and its 
subgroup C2/m (-b-c, a, c ; 0 0 0) (or equivalent), obtained with SUBGROUPGRAPH. 
(to obtain this graph one has to choose the correct conjugacy class among the three classes 
given by the program) 
 
 
 

                                                    
 
 
The group Immm, which is the isotropy subgroup of B1g, as shown in the previous 
section, is indeed a supergroup of C2/m. Therefore, B1g variables are compatible with 
the symmetry of the distorted phase, and therefore can be non-zero in this phase. They 
will be secondary spontaneous variables. 
 
 Table 1 indicates that x2-y2 and (xz, yz) transform according to B1g and Eg, 
respectively. This means that the shear strain components (εxz, εyz) have the symmetry 
properties of the active irrep, and could in principle be identified with the order 
parameter of the transition, while the strain difference εxx-εyy transforms according to 
B1g, being zero in the parent phase, and becoming spontaneous, as a secondary variable, 
in the C2/m phase. We have then a proper or pseudoproper ferroelastic transition (i.e. 
some strain component(s) have the symmetry of the order parameter), and we expect the 
softness at the transition of the stiffness coefficients corresponding to εxz and εyz, i.e. the 
elastic constants C55 and C66. The shear strain εyz (direction (0,1) in Eg) should become 
spontaneous in the C2/m phase, deviating the monoclinic angle from 90º, as  a primary 
order parameter effect.  [Equivalently we could consider the domain related distortion 
with εxz (direction (1,0) in Eg)]. On the other hand, the quantity εxx-εyy is zero in the 
parent phase (cell parameters a and b are equal), while in the C2/m phase εxx-εyy ≠ 0 
(cell parameter a and b become different), but as a secondary (weaker) effect. 
 As the index of C2/m is 4, four equivalent domain-related structures must exist. 
These domains should be distinguishable by the value of the order parameter (see eq. 
(3) above). From the structure having a spontaneous shear strain yz εο and zero shear 
strain xz: (0,εο), we obtain the values of the spontaneous shear strains εxz and εyz  in the 
other domains applying lost symmetry operations according to the matrices listed in 



Table 3: {2z|000} → (0,-εο), {4z-|000} → (εο, 0), {4z+|000}→ (-εο, 0). Therefore, the 
primary spontaneous monoclinic strain can have opposite values in different domains, 
and can also have two different orientations with respect to the parent tetragonal phase, 
corresponding to the monoclinic axis being along x or y, as listed in Table 4 above. 
 
Note: One must be take into account that the computer-adapted irrep labels used by 
COPL and ISOTROPY differ from those used in some programs of the Bilbao server, 
but they coincide with those employed by the programs SYMMODES and 
AMPLIMODES of the Bilbao server, as both of them use an adapted version of COPL 
kindly provided by H. Stokes.  
 
  
The program SYMMODES (J. Appl. Cryst. (2003). 36, 953): 
 
 SYMMODES is designed to provide a basis of symmetry-adapted displacive 
modes for describing any displacive distortion relating a group-subgroup-related pair of 
phases. These modes, which are allowed to condense in the distorted phase are both 
primary (with their symmetry given by the active irrep) and secondary  (with their 
symmetry given by secondary irreps having isotropy subgroups containing the observed 
space group). The program has been developed in collaboration with H. Stokes 
(Brigham Young University), and uses the program COPL.  
 
 For each allowed irrep (either active/primary or secondary), and restricted to the 
necessary irrep subspace, SYMMODES lists a complete set of symmetry-adapted 
displacive modes for the Wyckoff orbit types chosen by the user. In contrast with 
COPL, the program only requires as initial input the space group types of the high and 
low symmetry phase, G and H, and their index. The program then determines all the 
different classes of subgroups H of G, and the user has to choose the one relevant for 
the problem. A direct link to SUBGROUPGRAPH to obtain the graph of minimal 
subgroups is also available.  
 
        Once the relevant class of subgroups H is decided, the user chooses the set of 
Wyckoff positions, for which the basis of symmetry-adapted modes is desired. Note that 
the choice of unit cell for the H-group done by the program may not coincide with the 
one wished, but an equivalent one should appear on the list. 
 
        The program also allows to introduce a specific desired matrix transformation (If 
the matrix is not consistent with the subgroup, the program will write a warning and 
will stop). For our I4/mmm example, we use this option to introduce the specific matrix 
transformation we have been considering above for C2/m, and the following menu 
appears: 
 



Table 14: First Menu of SYMMODES for the pair I4/mmm --- C2/m (-b-c, a, c ; 0 0 0) 

 
            
We choose the Wyckoff position 8i to see the displacive modes that will be triggered by 
the transition for atoms on sites of this type. The output is the following: 
 
 
 
Table 15: Output of SYMMODES for the pair I4/mmm -- C2/m (-b-c,a,c;000) and the Wyckoff positions 8i. 

 



 
 
This ouput gives first a “Symmetry Modes Summary” listing the irreps corresponding to 
the displacive modes allowed for the chosen Wyckoff position(s), and highlighting in 
bold letters the active irrep, i.e. the one having C2/m as isotropy subgroup. We can see 
that modes of symmetry GM1+, GM2+ and GM5+ are allowed for 8i sites in the 
distorted structures, in agreement with Table 13. 
 
The output then lists for each irrep the corresponding isotropy subgroup with its 
transformation matrix, the eventual restriction on the direction within the irrep space 
(this is the data headed as “order parameter”), and a set of linearly independent modes 
having this irrep as symmetry.  



 
The form of the modes are given as a column of triads indicating the correlated 
displacements of the atoms of the Wyckoff orbit extended to the primitive unit cell of 
the distorted phase. As the distorted phase in our example has the same primitive unit 
cell (ik = 1) than the parent phase, the set of listed atomic positions is limited to 4. The 
other atoms in the structure belonging to the same orbit are related by lattice translations 
to those listed in the output and their mode displacements will have the same 
displacements. 
 
The components of the atomic displacements describing the modes are given in the 
setting of the parent structure. Modes are not normalized and, in the case of existing 
several modes for the same irrep, they are not orthogonalized. 
 
We can see in Table 15 that for 8i atoms, there is only a single mode with the symmetry 
of the active irrep. It involves displacements along the z-axis of only 2 of the 4 atoms 
within a primitive unit cell. Only atoms with non-zero y-component have non-zero 
displacements. Atoms with opposite y-components have opposite displacements along 
z. 
 
Modes GM1+ and GM2+ are restricted to the xy plane.  As it should be, GM1+ displaces 
the atoms in such a way that their components will maintain the I4/mmm symmetry 
relation described in the first column. In contrast, the mode GM2+ mode breaks this 
relationship: (x,0,0) and (0,x,0) sites have (0,1,0) and (0,-1,0) displacements 
respectively. 
 
From this output one expects that the atoms 8i of type (0,x,0) in the I4/mmm structure 
and their related ones by the I centring will suffer displacements along the c axis much 
stronger than along the y axis, the only two directions allowed (always working in the 
tetragonal setting), because the z-displacements correspond to the primary mode with 
the symmetry of the active irrep, and will be in principle related with the transitions 
mechanism. The atoms with positions (x,0,0) and the related ones by the I centring, on 
the other hand, will only have secondary displacements along the x-direction, that 
maintain the symmetry relation among them. 
 
SYMMODES also allows to examine the splitting of the Wyckoff orbit due to the 
symmetry decrease, by means of a link to the program WYCKSPLIT of the server: 
 

Table 16 : Splitting of orbits 8i for the symmetry break I4/mmm -- C2/m (-b-c,a,c;000)  
 
 

           
 

  
  
 

Wyckoff position(s)  
Group Subgroup More... 

1 8i 4g 4i 
 



Table 17: Detailed splitting of orbits 8i for the symmetry break I4/mmm -- C2/m (-b-
c,a,c;000) 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

The last column in Table 17 describes the generic positions of the two splitted orbits in 
the subgroup basis, while the third column indicates the corresponding position in the 
higher I4/mmm structure. One can see that the first 4 positions forming the 4g1 orbit do 
not really break the tetragonal symmetry; their only allowed variation of the y 
component (in the subgroup basis) is also compatible with the tetragonal space group. 
On the other hand, the other four positions forming the 4i1 orbit introduce an additional 
degree of freedom by breaking the correlation between the x and z components (in the 
subgroup basis). The number of symmetry free components in the two orbits is 3. This 
should coincide with the number of distinct modes listed in Table 15. In general, the 
number of modes should be equal to the number of degrees of freedom for the 8i atomic 
positions in the subgroup, and this is the number of free parameters in the resulting 
Wyckoff orbits in the subgroup symmetry. 
 
Even if we are not interested in the displacive modes present in the distorted phase, 
SYMMODES can still be used to obtain important information on the active and 
secondary irreps relevant for a given symmetry break. The information is more 
complete than in COPL as the transformation matrices for each isotropy subgroup are 
also listed. But a caution note should be added: SYMMODES only lists the compatible 
irreps which can be associated to displacive modes of the Wyckoff positions chosen. If 
we are interested in all the irreps compatible with the symmetry reduction, it is 
convenient to choose a general Wyckoff orbit, in order to have as many symmetry 
allowed displacive modes as possible. In most cases this will be sufficient to get all 
compatible irreps, but in some cases some compatible irreps may not be involved in any 
atomic displacements, and then it will not be listed by SYMMODES. 
 
Exercise 2: Using SYMMODES show that only two of the six space groups listed in 
Table 12 are isotropy subgroups of Fm-3m, and therefore only for these two subgroups 
a single active irrep can be identified. These two space groups should be therefore the 
two first obvious choices for the symmetry of the orthorhombic phase of the fullerene-
cubane crystals.  
 

Representative Subgroup Wyckoff position 
No group basis subgroup basis name[n] representative 

1 (x, 0, 0 ) (0, x, 0 ) (0, y1, 0 ) 
2 (-x, 0, 0 ) (0, -x, 0 ) (0, -y1, 0 ) 
3 (x+1/2, -1/2, -1/2 ) (1/2, x+1/2, 0 ) (1/2, y1+1/2, 0 ) 
4 (-x+1/2, -1/2, -1/2 ) (1/2, -x+1/2, 0 ) 

4g1 

(1/2, -y1+1/2, 0 ) 
5 (0, x, 0 ) (-x, 0, -x ) (x2, 0, z2 ) 
6 (0, -x, 0 ) (x, 0, x ) (-x2, 0, -z2 ) 
7 (1/2, x-1/2, -1/2 ) (-x+1/2, 1/2, -x ) (x2+1/2, 1/2, z2 ) 
8 (1/2, -x-1/2, -1/2 ) (x+1/2, 1/2, x ) 

4i1 

(-x2+1/2, 1/2, -z2 ) 



Exercise 3: As a continuation of exercise 1, check using SYMMODES that the space 
group you have determined in exercise 1 is an isotropy subgroup. Identify the wave 
vector and the label of the active irrep of the transition, and check by hand that indeed 
this irrep yields the superlattice that has been observed. 
 
Exercise 4: A compound with parent symmetry Pmmm exhibits a sequence of phase 
transitions into two phases with superstructures having their parameter b multiplied by 4 
and 3, respectively. The two phases are due to a distortion which varies its wave vector 
along b*, but keeps the same rotational symmetry given by the same small irrep (only 
the modulus of the wave vector changes). The space group of the phase with b-
parameter = 4b has been identified as Pmmb keeping the same setting (or Pmma in 
conventional setting). The experiments indicate that the phase with the b-parameter = 
3b is also orthorhombic. Using SYMMODES and CELLSUB predict the space group of 
this second phase. Show that it will be ferroelectric with the polar axis along the z axis 
(in the original setting). 
 
Exercise 5: Monoclinic phase of the system PbZr1-xTixO3 
Consider the perovskite-like ferroelectric system PbZr1-xTixO3 (PZT). Some 
measurements have revealed a monoclinic phase (with no cell multiplication) between 
the previously established tetragonal (P4mm) and rhombohedral (R3m) regions in its 
phase diagram as a function of x.  Both phases, P4mm and R3m, are ferroelectric 
distorted phases of the perovskite, due to the condensation of a polar mode of symmetry 
at k=0. The perfect perovskite structure PbBO3 is cubic Pm-3m (Z=1) with positions: pb 
1b, B 1a, O 3d.  
 
(i) If you have difficulties to derive directly the index of the subgroups P4mm and R3m 
with respect to their parent space group Pm-3m, use POINT to obtain the order of the 
point groups m-3m, 4mm and 3m, and from them, obtain the t-index. This t-index 
multiplied by the relevant k-index will give you the necessary index to use in 
SYMMODES. 
(ii) Using SYMMODES obtain a valid transtormation matrix for the pairs Pm-3m  --
P4mm, and Pm-3m -- R3m, and check that indeed the two phases, P4mm and R3m, can 
be assigned to the same active irrep, for two different directions of the order parameter. 
Take notice of the active irrep and these directions. 
(iii) A reasonable assumption about the detected monoclinic structure is that it must be 
some bridging phase with the order parameter changing between the two special 
directions obtained in (ii). Its symmetry would then be given by a common subgroup of 
the tetragonal and rhomboedral space groups. Use COMMONSUBS to predict under 
this assumption the space group of the monoclinic phase. Take notice of the 
transformation matrix relating it with the space group P4mm. 
(v) From the transformation matrices for the pairs Pm-3m  --- P4mm and P4mm --- 
monoclinic space, obtain the transformation matrix relating Pm-3m and the monoclinic 
space group. Using SYMMODES again demonstrate that the active irrep of the 
postulated monoclinic space group is indeed the same as for the other two phases. 
Compare the order parameter direction with those obtained in (ii)  
(vi) Use TRANSTRU to derive a starting structural model of the monoclinic phase 
(with a single mixed site for the Zr/Ti atoms), which you could use as the starting point 
for a refinement of the structure. 
  
 



3. Symmetry breaks with several active irreps  
 
 As already mentioned above, there may be some symmetry breaks that do not 
fulfill the Landau postulate of having a single active irrep. In other words, the symmetry 
reduction cannot be explained by a single irrep, as the symmetry of the distorted phase 
is not an isotropy subgroup of the parent space group. If the transition is discontinuous 
or first order, there are indeed mechanisms that can explain the breaking of the Landau 
postulate and predict the simultaneous condensation of two irreps. However, these 
situations are rare, and the most plausible explanation for such cases is that the 
condensation of the two active irreps is in fact stepwise and an intermediate phase has 
been overlooked 
 
           Independently of the existence or not of an intermediate phase, the existence of 
two active irreps implies a scenario, where several degrees of freedom of the structure 
are independently unstable in the high-symmetry configuration. This is bound to 
produce rich phase diagrams. 
 
 Let us consider the example of the Aurivillius compound SrBi2Ta2O9. The 
compound is known to have a tetragonal I4/mmm phase at high-temperatures with Z=2, 
and at room temperature crystallizes in the subgroup Cmc21 (c, a-b,a+b; ¼,¼,0) with 
Z=4. Using SYMMODES we can obtain the following information about the 
intermediate subgroups relating this group-subgroup pair (note that there are two Cmc21 
classes with the same type of cell transformation, and only distinguishable by the origin 
shift. So one has to take care of choosing the correct one) 
 
Figure 2: Graph of minimal subgroups connecting the space group I4/mmm and its 
subgroup Cmc21 (c, a-b,a+b; ¼,¼,0) (or equivalent), obtained with 
SUBGROUPGRAPH.  
 

 
 
 



(Note: The group Cmca (N. 64) is labelled Cmce in the new convention of the last 
version of the International Tables of Crystallography) 
 
For each of the subgroups, we have indicated in Figure 2 the corresponding active irrep, 
if existing. The graph shows then that all subgroups are isotropy subgroups for some 
irrep, except for the actual observed symmetry.  The room temperature phase requires 
therefore several active irrep. How many? Just two. The effective symmetry resulting 
from the presence of two of the distortions is the intersection of the two corresponding 
isotropy subgroups, and this is given in the graph by their first common subgroup. 
Hence, it is sufficient to consider any pair of the distortions Γ5

-, X3
- and X2

+, to reach 
the symmetry Cmc21. Only the irrep Γ4+ cannot be relevant for producing the observed 
symmetry Cmc21. i.e. its addition to any of the other ones, does not decrease further the 
symmetry.  
 
 We have therefore three possible irreps among which two must be the active 
ones. Symmetry considerations cannot go further. Only a quantitative analysis of the 
structure, ab-initio calculations, or the thermal behaviour of the system can indicate 
which of the three irreps are really the active irreps in this specific case. The distortions 
having the symmetry of the active irrep are expected to have larger amplitudes, and be 
the ones that are unstable in the high-symmetry configuration. For instance, a 
decomposition of the Cmc21 structure of SrBi2Ta2O9 in terms of symmetry-modes, done 
with AMPLIMODES, shows that the distortions of symmetry Γ5

- and X3
- have much 

larger amplitude than the one for the irrep X2
+. Furthermore, the X3

- distortion is 
significantly larger than the Γ5

-. Therefore we can identify X3
-  and Γ5 as the active 

irreps. The additional X2
+ spontaneous distortion present in the experimental structure 

can be considered a secondary effect, essentially induced by the presence of the other 
two primary distortion modes 
 As the X3

- distortion is the largest one we expect it to be the one that thermalizes 
to zero value at higher temperatures, and therefore we can infer that an intermediate 
phase with symmetry Cmcm is highly probable, corresponding to the presence of only 
this active irrep. Indeed this intermediate phase has been observed!  The other mode Γ5

- 
is the irrep Eu in the notation of the Tables of the program POINT. It corresponds to the 
symmetry properties of a vector on the plane xy, and therefore is a polar instability, that 
can produce a spontaneous polarization (its isotropy subgroup Fmm2 is polar along the 
(1,1,0) direction in the tetragonal setting). This Γ5

- polar distortion is then the 
fundamental mechanism causing the lost of the inversion centre in the room-
temperature structure, and the ferroelectric properties of the room temperature phase 
 
Exercise 6: A compound has Pnma symmetry at high temperatures and has space group 
P1211 at low temperatures, keeping essentially the same lattice, except for some strain. 
Using SYMMODES obtain the graph of minimal subgroups relating both symmetries. 
Check that at least two irreps must be active to explain the symmetry of the distorted 
structure. Indicate the possible pairs of active irreps in the distorted phase. Indicate the 
possible (alternative) symmetries of a probable intermediate phase. 
 
Exercise 7: The multiferroic BiFeO3 has symmetry R3c with Z=6 at room-temperature, 
having at high temperatures the cubic perovskite configuration (Fe: 1a, Bi: 1b, O: 3d). 
(i) Using SYMMODES, show that the room temperature phase of BiFeO3 has two 
active irreps, one being the usual R4+ mentioned above, and the other one is the one 
discussed in exercise 5, present in BaTiO3.   



(ii) Some publications have reported an intermediate phase with symmetry I4/mcm. 
Crosscheck the consistency of this intermediate symmetry with your previous results.  
(iii) With TRANSTRU produce a starting structural model to refine the structures 
I4/mcm and R3c of BiFeO3, indicating the refinable coordinates of the constructed 
asymmetric unit. 
 
  

 


