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SUBGROUPS is a freely available program at the Bilbao Crystallographic Server
(www.cryst.ehu.es), which allows to determine and explore online all possible
symmetries of a structure that can result from the distortion of a parent structure
of higher symmetry, if the relation of its lattice with respect to the one of the
parent structure is known (or alternatively, the modulation wave vector(s) present
in the distortion are given).

The minimal input required is the space group of the parent structure (parent
space group) and the supercell defining the lattice of the distorted structure with
respect to the one of the parent space group. The program then provides all
possible symmetries consistent with the given supercell, defined as subgroups of
the parent space group, and it can show their complete group-subgroup hierarchy.
The set of physically equivalent subgroups within each conjugacy class, which are
compatible with the given supercell, can also be retrieved. The irreducible
representations (irreps) of the parent space group compatible with each of the
listed possible symmetries can also be obtained.

Alternatively, instead of a supercell, the relation of the lattice of the distorted
structure with respect to the lattice of the parent structure can be given
introducing the set of wave vectors, which can describe all the extra
superstructure reflections (commensurate satellite reflections) observed in the
diffraction diagram, when compared with the one of the parent structure (if the
lattice is mantained a zero wave vector should be given).

The possible subgroups provided by the program can be filtered according to
different criteria, the most important ones being:

i) Subgroups that are possible for displacive distortions if the atoms of the
parent structure only occupy some specific special Wyckoff positions.
ii) Subgroups down to a given crystalline class or a given point group.

iii) Subgroups that can be the result of an order parameter fulfilling the
Landau condition of transforming according to a single irreducible
representation (irrep) of the parent space group.

iv) In the case that the input includes the definition of the active wave
vectors: subgroups that can be realized by the action of an order
parameter transforming according to one (or several) chosen irrep(s) of
the parent space group for the input wave vector(s).



Aditionally the possible subgroups can be restricted considering some particular
property of the distorted phase, as for intstance being polar or non-polar,
centrosymmetric or non-centrosymmetric, proper ferroelastic, etc.

Below a set of examples on the use of the program are discussed in detail. In order
to minimize overlapping and redundancies, these examples are in general
presented and explained assuming that they are read one after the other in the
order that are presented, so that in general the features that are discussed in one
example are not explained again in the subsequent ones. Therefore, it is
convenient to read the examples below in the given order.



Example 1: Possible symmetries of the low temperature phase of

a fullerene-cubane crystal.

Crystals that include both molecules of fullerene and cubane are known to crystallize at
high temperatures in the Fm-3m space group, with the disordered fullerenes centred at
the site 4a (0 0 0) and the disordered cubane molecules at 4b (1/2 1/2 1/2) (Nature Mat.
4, 764 (2005)). At low temperature, as the molecules become ordered, the system
exhibits a couple of phase transitions. From powder diffraction experiments, the
symmetry of the final phase has been reported to be an orthorhombic structure, with the
lattice parameters of its primitive orthorhombic unit cell satisfying the approximate
relations: a = b = a/N2, while ¢ = 2a.. However, the phase space group, and therefore
its structure, could not be determined (J. Phys. Chem. B 113 2042 (2009)). Obviously, if
we could restrict the symmetry of this phase to a minimal set of possible or most
probable space groups, we could have a better chance of succeeding in the interpretation
and analysis of its diffraction diagram. The program SUBGROUPS is designed to deal
with such type of problems, and can be used for this specific example in the
following way:

Subgroups: Subgroups compatible with a given supercell or some propagation
vector(s).
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a) Introduce in the first input page of SUBGROUPS the parent space group
Fm-3m (N. 225) and the lattice supercell, which must be as=1/2a-1/2b,
bs=1/2a+1/2b, c;=2c, and set this supercell as primitive in the corresponding
centering option (the basis of the supercell must keep the assumed right-handness
of the parent basis). Leave all additional options in their default values (notice that
the Bilbao crystallographic server in general, and this program in particular,
follows the convention of the International Tables for Crystallography, and
consequently, the transformed vectors defining the unit cell basis, when expressed
in the form of a 3x3 matrix, are the columns of the matrix, and not the rows). By
clicking the “submit” button at the bottom with “List of subgroups” chosen by
default, a list of all possible subgroups of Fm-3m (actually conjugate classes of
subgroups) consistent with the observed supercell is obtained.

The list of subgroups provided by the program for these conditions is very
numerous (99 subgroups) as it goes down up to the minimal symmetry of P1. This
number is still workable, and the program can deal with up to several hundreds,



but it must be warned that, if the supercell is very large with respect to the parent
one, the number of subgroups may increase so much that the maximum running
time allocated for the program will be reached and the program will stop without
yielding any result.

In our example, let us reduce the list by going back to the page of the previous
menu and set the option “Lowest crystal system to consider” to orthorhombic. The
list is now reduced to 62 subgroups. Most of them can still be discarded, as the
observed diffraction symmetry is orthorhombic, and the list includes all subgroups
belonging to crystal systems of higher symmetry. Being orthorhombic, the point group
of the possible space group within the list can only be 222, mm2 or mmm. To simplify,
we are going to assume that the relevant point group symmetry is the maximal one:
mmm (we could proceed similarly with the other two possible point groups if necessary).

b) In order to select from the whole set of possible subgroups those with point
group mmm, go back to the first input page and select the option: “Lowest point
group to consider” and introduce the point group “mmm”.

Optional: refine further the subgroups of the output giving the Wyckoff positions of the atoms
Give the Wyckoff positions Wyckoff

Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order
parameter).

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right)

(Check only one option on the left and the specific value on the right)

Lowest space group to consider chooseit 1
© Lowest point group to consider g&mmm [
Lowest crystal system to consider e &

Only maximal subgroups

The list is then reduced to 20 subgroups, which are shown as an interactive list or, if the
button “Graph of subgroups” is clicked, as a graph showing the group-subgroup
hierarchy of these 20 subgroups:

Figure 1.1. Graph obtained with SUBGROUPS showing the group-subgroup hierarchy of all possible
symmetries of a structure resulting from the distortion of a cubic structure with space group
Fm-3m, restricted to those having a primitive supercell (1/2a-1/2b, 1/2a+1/2b, 2c) or equivalent,
and with a point group mmm or higher.



The list includes all subgroups with point group mmm or higher. The tetragonal groups
can be discarded, and the orthorhombic ones that are C centred can also be dropped: the
unit cell is known to be primitive, with the orthorhombic axes along the oblique
supercell basis vector directions, while the C centered groups have their orthorhombic
symmetry axes along the parent cubic a,b,c directions, instead of the desired oblique
directions (notice that these subgroups have been correctly included by the program in
the previous list because they have as primitive unit cell the one that we have
introduced). We are then left with 6 possible symmetries, shown in Figure 1.2.
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Figure 1.2. Fragment of the list of subgroups obtained with SUBGROUPS, showing the possible
space group symmetries of a structure with point group mmm, resulting from the distortion of a
cubic structure with space group Fm-3m, and having as primitive unit cell a supercell (1/2a-1/2b,
1/2a+1/2b, 2c) or equivalent. The symmetries are described as subgroups of the space group
Fm-3m. Each subgroup is a representative of a set of subgroups that are physically equivalent and
belong to the same conjugacy class (see text).

In the third column of the tabulated list a transformation (P,p) is given for
each subgroup, where P is a 3x3 matrix and p = (p1, p2, p3) a column vector. This
transformation indicates in each case a choice of unit cell and origin, for which the
subgroup adquires the standard setting of the corresponding space group type
indicated in the second column. This means that the symmetry operations of this
subgroup of the parent space group, when described using this unit cell and origin,
take the form used for this space group type in the International Tables for
Crystallography, vol. A (ITA), which we take as the standard setting of this space
group (see www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice for more
information on the standard settings chosen in the Bilbao crystallographic server
in the case of space groups where several choices are allowed in the ITA). The
transformation (P,p) is defined with respect to the unit cell (ap,bp,cp) and origin Op
of the parent space group, in the following form:

(as,bs,cs)= (ap,bp,cp).P , Os=0p+pi1ap+pzbp+p3cy



where (as,bs,cs) and Os are the unit cell basis vectors and origin for which the
subgroup operations take the form of the standard setting of its space group type.
This means, as stressed above, that the transformed basis vectors are given by the
columns of the matrix (not the rows).

The fourth column in the output list of subgroups indicates the subgroup
index, i.e. the factor relating the number of operations in the parent space group
with the one in the subgroup. The subgroup index is separated in two factors, the
first one relating the two lattices, and the second one the two point groups. Thus in
this case, the first factor is always 4, as it is the approximate volume ratio between
the primitive unit cells of the parent and the searched distorted structure, while
the second factor is 6, which is the index or reduction factor of the mmm point
group (with 8 operations) as subgroup of the parent cubic point group m-3m (with
48 operations). This subgroup index defines the number of distinct domains that
can be expected in a distorted phase with this subgroup symmetry. The first factor
determines the number of distinct antiphase domains related by lattice
translations (not distinguishable in diffraction experiments), while the second one
defines the number of distinct twins or domains associated with lost rotational or
roto-inversion symmetry operations.

A button in the fifth column allows to obtain a listing of the conjugacy class
of subgroups, from which the one listed in the Table is a representative. It is very
important to stress that in general this listing does not include the whole conjugacy
class, as it is restricted to the conjugate subgroups that are compatible with
the supercell introduced in the input. Conjugate subgroups belonging to the
conjugacy class but with orientations such that their supercell does not
coincide with the one of the input, are NOT shown. In general, all subgroups
within a conjugacy class are physically equivalent, and one can select arbitrarily
any of them to describe the distorted phase. The program makes an arbitrary
choice of the class representative and this is the subgroup given in the output list
shown in Figure 1.2. Therefore, the first list provided by the program can be
considered a list of conjugacy classes of subgroups, which are compatible with the
sublattice defined by the input supercell.

It is important to stress that the hierarchical group-subgroup graph that can
optionally be retrieved, as the one shown in Figure 1.1, represents group-subgroup
relations between pairs of unspecified subgroups belonging to the corresponding
conjugacy classes labelled by their representatives. Therefore, in general they do
NOT imply a group-subgroup relation between the specific subgroups that are
listed as conjugacy class representatives in the accompanying list. In order to
obtain more detailed graphs of group-subgroup relations between specific
subgroups, one has to use instead the graph options appearing when the
corresponding conjugacy class is listed by clicking in the fifth column on this list.
We will keep these options unused in this example.

The last column in the listing shown in Figure 1.2 with the button “Get irreps”
links directly with a separate program of the Bilbao Crystallographic Server with
this name, which can help to limit further the most probable symmetry of the
investigated structure, as shown in the next steps.



c) Click the button “Get_irreps” for the first of the subgroups in Figure 1.2, the
one of type Pnma. By clicking on this button one gets the irreducible
representations (irreps) of the parent structure that are compatible with this
specific symmetry for the distorted structure. This means that one gets the irreps
that can characterize the degrees of freedom allowed by this symmetry, and that in
accordance with Von Neumann principle are set free in a distorted structure with
its symmetry described by this subgroup. The output is organized in the form of a
Table. Its first column indicates the star of wave vectors of the irrep. The wave
vector(s) that are involved with the chosen symmetry are highlighted in bold. The
second column indicates the label of the irrep, and in parenthesis the subspace
within the irrep space into which the irrep distortion (order parameter) must be
constrained.

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

| Group—subgroup | Transformation matrix
_ 0 1/2 -1/2 0
Fm3m (N. 225)—Pnma (N. 62) ( 0 1/2 1/2 1/4)
2 0 0 -1/4

Representations and order parameters

Show the graph of isotropy subgroups

isotropy subgroup

k-vectors irreps and order parameters . . link to the irreps
transformation matrix
+ Fm3m (No. 225)
GM1™: (a) a,b,c;0,0,0
. +. 14/mmm (No. 139) . .
GM: (0,0,0) GM3™: (a,0) a/2-b/2,a12+b/2,¢:0,0,0 matrices of the irreps
+. Immm (No. 71)
GMs™: (2,0,0) al2+b/2,-a/2+b/2,¢;0,0,0
. . Pnma (No. 62) _ _
DT: (0,1/2,0)(1/2,0,0)(0,0,1[2) DT5. (0,0,0,0,0,0,0,0,8,0,0,8) 20,a/2+b/2,-a/2+b/2;0,1/4,-1/4 matrices of the irreps
; P4o/nme (No. 137)
X27:(0,0,a) )
X: (0,1 ,0)(1,0,0)(0,0,1) alz-b/Z’a/2+b/2’C’0’1/4’1/4 matrices of the irreps
X2 (0.0 P4/nmm (No. 129)
3:(0,0.3) a/2-b/2,a/2+b/2,c;1/4,0,1/4

Figure 1.3. Output when calling to the program “Get_irreps” for the subgroup of Fm-3m of type
Pnma indicated in Figure 1.2. One can see that the actual Pnma subgroup is among the listed
compatible irrep isotropy subgroups, and therefore this symmetry can be attained by an order
parameter associated with the corresponding irrep, namely DT5. The wave vector (0,0,1/2), shown
in bold, within the set of wave vectors of the irrep (irrep star) is the only one involved in the
necessary irrep distortion.

The actual irrep matrices, which are being chosen for the description of the
relevant irreps, can be consulted by clicking in the corresponding button “matrices




of the irreps” in the last column of the table. This is a direct link to the database
REPRESENTATIONS SG, where the matrix form that is being used for the irrep can
be retrieved.

The irrep labels are those being also used by the ISOTROPY suite
(iso.byu.edu), but the specific matrix form of the irreps, which depends on the
choice of basis, may differ from the one chosen in that reference. Therefore it is
important to stress that the symbol for the order parameter direction in the second
column, which depends on the matrix choice for the irrep, is not necessarily the
same as in ISOTROPY. Finally, in the third column one can consult the so-called
isotropy subgroup associated with each of the listed compatible irreps. These irrep
isotropy subgroups of the parent space group, also expressed as a space group type
and a transformation (P,p) to its standard setting, are the symmetries that would
result from the only presence in the structure of an order parameter transforming
according to the corresponding irrep (restricted to the indicated subspace). By
definition, all these subgroups must be strict supergroups of the actual subgroup
being analysed, or coincide with it.

Distorted phases very often comply with the Landau assumption that their
symmetry is the result of an order parameter transforming according to a single
irrep. Thus, symmetries that can be reached by the onset of a single irrep are more
probable. In Figure 1.3, one can see that the isotropy subgroup of one of the
compatible irreps, namely DTS5, coincides with the actual subgroup of type Pnma
that is being analyzed. This implies that the symmetry break Fm-3m ---> Pnma (2c,
-1/2a+1/2b, -1/2a-1/2b;0, Y4, - % ) can be realized through a Landau type phase
transition, with an order parameter having the transformation properties of the
DTS5 irrep (within the specified direction). This is clearly seen if one clicks on the
option “show the graph of isotropy subgroups” available in the Get_irreps output, as
we do in the next step.

d) Click on the graph button of the output represented in Figure 1.3.

This provides a graph of the group-subgroup hierarchy between the parent space
group and the analysed subgroup, with all intermediate subgroups included, as
shown in Figure 1.4. The isotropy subgroups in the list are highlighted in the
graph by adding the associated irrep or irreps in parenthesis below their label. In
the present case, the end node of the graph, which is the analysed subgroup Pnma,
includes an irrep label, showing that it can be directly reached by the onset of an
order parameter associated with the indicated irrep.
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Figure 1.4. Output of the graph option in the output of “Get_irreps” for the subgroup of Fm-3m of
type Pnma indicated in Figure 1.2. One can see that this Pnma subgroup is among the listed irrep
isotropy subgroups, with the relevant irrep DT5 shown in parenthesis below the space group label.
Therefore this symmetry can be attained by an order parameter associated with this single irrep, in
accordance with Landau theory.

e) Use the “Get irreps” option for the other possible symmetries shown in
Figure 1.2. You will then see that only two of the six possible symmetries shown in
Figure 1.2 can be the result of a single irrep order parameter and therefore fulfill
the Landau condition, i.e. they can be the result of a Landau-type phase transition.
These are namely those of type Pnma and Pmma. The listings that you will obtain
show that both of them can be the result of the condensation of an order
parameter characterized by the irrep DT5:

DTS5
Fm-3m --- > Pnma (2c, -1/2a+1/2b, -1/2a-1/2b;0, %, - ¥4 )

DT5
Fm-3m --- > Pmma (2c, -1/2a+1/2b, -1/2a-1/2b;0, 0, ¥2)

These two symmetry breakings are therefore the two first choices to explore for
the investigated phase. Of course, the other four orthorhombic symmetries are also
possible but they necessarily require the action of more than one irrep, i.e. the
presence of at least two order parameters . For instance, the “Get irreps” output for
the symmetry Pmmn (1/2a+1/2b, -1/2a1+1/2b, 2¢;0, %, - % ) is shown in Figure
1.5. One can see that this symmetry is not realized by any of the listed compatible
irreps, and this particular symmetry break requires more than one irrep.



List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

Group—subgroup Transformation matrix

0 0 2 -1/4

— 1/2 -1/2 0 0
Fm3m (N. 225)—Pmmn (N. 59) ( 1/2 1/2 0 1/4)

Representations and order parameters

Show the graph of isotropy subgroups

isotropy subgroup

k-vectors irreps and order parameters . . link to the irreps
transformation matrix
. Fm3m (No. 225)
GM1™ (a) a,0,¢;0,0,0
. . 14/mmm (No. 139) - -
GM: (0,0,0) GM3+. (a,0) a/2-b/2,812+b/2,6:0,0,0 matrices of the irreps
£ Immm (No. 71)
GMs™ (2.0.0) al2+b/2,-a/2+b/2,¢;0,0,0
. P4/nmm (No. 129)
DT: (0.0.0.0.2:3) al2+b/2,-a/2+b/2,2¢;0,1/4,-1/4
DT: (0,1/2,0)(1/2,0,0)(0,0,1/2) matrices of the irreps

P4s/nmc (No. 137)
al2+b/2,-al2+b/2,2¢;0,1/4,-1/4
R P4y/nmc (No. 137)

X2 (0,0,a) )

X: (0,1,0)(1,0,0)(0,0,1) alz-gf/,a/zm(/'i,c,?; SJ/“ matrices of the irreps
- nmm 0.

X3 (0,0.2) al2-b12,a12+b/2,c:1/4,0,1/4

DT3: (0,0,0,0,a,-a)

Figure 1.5. Output when calling to the program “Get_irreps” for the subgroup of Fm-3m of type
Pmmn indicated in Figure 1.2. One can see that the Pmmn subgroup is absent from the listed irrep
isotropy subgroups compatible with this subgroup, and therefore this symmetry cannot be
associated with a distorted phase resulting from a Landau-type phase transition.

f) Click on the graph button of the output represented in Figure 1.5 to show
graphically the group-subgroup relations among the listed isotropy subgroups.
The program then provides a list and a graph of all intermediate subgroups up to
the chosen Pmmn. The list includes by definition all irrep isotropy subgroups listed
in Figure 1.5, but also all other ones that are subgroup of the parent one and
supergroup of the specific Pmmn. One can clearly see that all compatible irreps
give place to intermediate subgroups, but none of them can be associated with the
final symmetry being considered. In this case the symmetry break cannot be
achieved with a single irrep, and the location of the irrep isotropy subgroups in
this graph allows to identify which irreps can be relevant for the set of primary
order parameters.
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Figure 1.6. Part of the output obtained with the graph option after calling the program “Get_irreps”
for the subgroup of Fm-3m of type Pmmn indicated in Figure 1.5. One can see that this subgroup
can only be reached as the intersection of at least two isotropy subgroups for two different irreps

From Figure 1.6, one can derive the subgroup that is realized by the presence of
any chosen pair of the irreps under scrutiny, namely, it is just the maximal
subgroup in the graph that is a common subgroup of the isotropy subgroups
corresponding to the two irreps. Hence, inspecting the graph shown in Figure 1.6,
one can see that the Pmmn symmetry, could be consequence of the presence of two
order parameters transforming according to the irreps DT3 and DT1. But the
following pairs of irreps could also do the same job: DT3 and X2-, DT1 and X2-,
DT3 and GM5+, DT1 and GM5+. What is clear is that two irreps are sufficient for
this specific symmetry break.

g) Do the same process as in the previous step for the other three possible
symmetries not associated with a single irrep. Graphs of similar topology to the
one of Figure 1.6 are to be obtained, showing also the need of two primary order
parameters for these symmetry breaks. Similarly as in the case discussed above,
identify the possible pairs of active irreps for the corresponding symmetry
breakings.

h) Come back to the main menu of SUBGROUPS and choose the option “Show
only subgroups that can be the result of a Landau-type transition (single
irrep order parameter)”, cancelling the previous limit of the lowest symmetry
that had been introduced.



Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order
parameter).

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right)
(Check only one option on the left and the specific value on the right)
© Lowest space group to consider chooseit 1
Lowest point group to consider <]

Lowest crystal system to consider g

Only maximal subgaroups

This option allows to discard all possible symmetries that cannot be reached by
the action of a single irrep distortion, and therefore cannot be the result of a phase
transition fulfilling the basic condition of Landau theory: the onset of an order
parameter transforming according to single irrep of the parent space group. This
“Landau-type” filter allows to obtain directly all possible symmetries under this
condition. In our case, one can see that this condition reduces the number of
possible distinct symmetries from 99 to 31. The obtained list of 31 subgroups
includes, as it should be, the subgroups Pnma and Pmma, that we had already
determined, in the previous steps, as possible symmetries for a Landau type
transition. Thus, this filter allows to reach much rapidly the same conclusion. The
other possible symmetries with point group mmm, which require more than one
order parameter, are automatically excluded.

Figure 1.7. Graph obtained with SUBGROUPS showing the group-subgroup hierarchy of all possible
symmetries of a structure resulting from the distortion of a cubic structure with space group
Fm-3m, restricted to those having a primitve supercell (1/2a-1/2b, 1/2a+1/2b, 2c) or equivalent,
and adding the condition that the symmetry should be possible for a Landau-type phase transition,
i.e. the symmetry can be the result of the onset of an order parameter transforming according to a
single irrep of the parent space group. From the six non-centered subgroups with point group mmm,
appearing in Figures 1.1 and 1.2, only the subgroups of type Pnma and Pmma appear here, as they
are the only ones that fulfill the Landau condition.

Summarizing, using the program SUBGROUPS we have been able to identify
two possible space groups for the phase under investigation, which would be
consistent with a Landau-type phase transition. Four additional possible space
group symmetries have also been determined, but these alternative space groups
require the action of two irreps, and therefore imply a more complex transition
mechanism with two order parameters, either concomitant in a single transition or
becoming spontaneous in two consecutive phase transitions.



Example 2. Possible symmetries with parent space group Pnma
and a cell multiplication (a,b,2c)

Let us suppose that we observe a structure with symmetry Pnma, which exhibits
when lowering the temperature a phase transition. Diffraction experiments in the low
temperature phase give evidence of superstructure reflections, which can be indexed as
(h, k, I+ 1/2). This additional diffraction peaks indicate a distortion which implies a
duplication of the ¢ parameter, while keeping an orthorhombic lattice, or equivalently a
distortion with a modulation wave vector (0,0,1/2), when expressed in the basis of the
parent reciprocal lattice. We wish to know the possible space group symmetries that this
low temperature phase can have, in order to construct structural models that could fit the
diffraction data.

a) Introduce in the input webpage of SUBGROUPS the space group Pnma N. 62 ,
as symmetry of the parent phase, and the supercell (a,b,2¢), as primitive unit cell,
of the observed distorted phase. Without any additional restriction the program lists
11 possible space group symmetries (Figure 2.1) given by the 11 possible subgroups of
Pnma (in general, they are actually representatives of conjugacy classes of subgroups),
which are consistent with the sublattice defined by the observed supercell. The format
of this list was explained in the previous example of this tutorial.

N |Group Symbol| Transformation matrix Grour{-Subgroup Other r_nembers of irreps
index the Conjugacy Class
0 0 -1 0 : )
1 |Pca24 (No. 29) ( g 3 g _i; 2 ) 4=2x2 Conjugacy Class Getirreps
[ 0o o 1 0 ' ,
2 |Pmc24 (No. 26) ( é (2) g _i;i ) 4=2x2 Conjugacy Class Get irreps
[ 1 0 o 0 ' ,
3 P21/C (NO. 14) ( g é (2) g ) 4=2x2 Conjugacy Class Get irreps
[ 1 0 o0 0 _ _
4 P21/m (NO. 11) ( g é g 1/2 ) 4=2x2 Conjugacy Class Get irreps
[ o o 1 0 _ _
5 Pc (NO. 7) ( é g g _1/2 ) 8=2x4 Conjugacy Class Get irreps
[ 1 0 o 0
6 Pc (NO. 7) ( g (:k (2) 1/3 ) 8=2x4 Conjugacy Class Get irreps
[ 1 0 o0 0 _ _
7 Pm (NO. 6) ( g (:k (2) 1/3 ) 8=2x4 Conjugacy Class Get irreps
[ 1 0 o0 0 _ _
8 P21 (NO. 4) ( g g (2) 1/(2) ) 8=2x4 Conjugacy Class Get irreps
[ 0o 1 0 0 _ _
9| P21 (No.4) ( 'é g g _1;:11 ) 8=2x4 Conjugacy Class Get irreps
[ 1 0 o0 0 — =
10 PT (NO. 2) < g 3 (2) 1/(2) ) 8=2x4 onjugacy Class et ireps
[ 1 0 o0 0 — =
1 P1 (NO. 1) < g 3 g g ) 16=2x8 onjugacy Class et irreps

Figure 2.1. List obtained with SUBGROUPS, showing the possible space group symmetries resulting
from the distortion of a structure with space group Pnma, and having a supercell (a, b, 2c). The
symmetries are described as subgroups of the space group Pnma. Each subgroup is a
representative of a set of subgroups that are physically equivalent and belong to the same
conjugacy class (see text).



We only repeat here the meaning of the third column information, where a
transformation (P,p) is given for each subgroup, with P being a 3x3 matrix and p =
(p1, p2, p3) a column vector. This transformation indicates in each case a choice of
unit cell and origin, for which the subgroup being listed adquires the standard
setting of the corresponding space group type, given by the label in the second
column. This means that the symmetry operations of this subgroup, when
described using this unit cell and origin, take the form used for the symmetry
operations of this space group type in the International Tables for Crystallography
vol. A (ITA), which we take as the standard setting for this space group type (see
www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice for more information
on the standard settings chosen in the Bilbao server in the case of space groups
where several choices are allowed by the ITA). The transformation (P,p) is defined
with respect to the unit cell (ap,bp,cp) and origin O, of the parent space group, in
the following form

(as,bs,c5)= (ap,bp,cp).P , 05=0p +prap+p2bp+p3cp

where (as,bs,cs) and Os are the unit cell vectors and origin for which the subgroup
operations take the form of the standard setting of its space group type. This
means, as stressed above, that the transformed basis vectors are given by the
columns of the matrix (not the rows!).

Pnma
0
Pca2; Pmc2; P2)/c P2, /m
1 2 3 4
Pec P2, Pc Pm Pi P2,
5 9 6 7 10 8

P1
11

Figure 2.2. Graph obtained with SUBGROUPS, showing the possible space group symmetries
resulting from the distortion of a structure with space group Pnma, and having a supercell (a, b, 2¢).
The symmetries are described as subgroups of the space group Pnma. Each subgroup is in general a
representative of a set of subgroups that are physically equivalent and belong to the same
conjugacy class (see text). The numbers below the space group labels correspond to the sequential
numbering used in the list shown in Figure 2.1. If desired, a graph without these numbering can
also be retrieved.



b) Click on the “get group-subgroup graph” button on the output list obtained in
the previous step. The group-subgroup hierarchy of the listed possible subgroups is
shown graphically. The four subgroups of maximal symmetry, i.e. those not having
intermediate subgroups between them and the parent space group, are those with the
minimal symmetry break. Empirically these maximal subgroups can be considered more
probable as symmetries of a distorted structure. The program allows restricting the list
of subgroup from the start to these maximal subgroups by choosing on the first input
page the option “only maximal subgroups”. Then the list and graph would be reduced to
the groups Pca2;, Pmc2;, P2,/c and P2;/m.

¢) Come back to the main input webpage and use the appropriate additional filter
to restrict the possible subgroups to those that are polar. The list is then reduced to
8 subgroups, which using the graphical option they are shown in Figure 2.3. This means
that most of the possible symmetries are polar, implying in the case of an insulator an
improper ferroelectric phase.

Figure 2.3. Graph obtained with SUBGROUPS, showing the possible space group symmetries
resulting from the distortion of a structure with space group Pnma, having a supercell (a, b, 2c), and
restricted to those being polar. The numbers below the space group labels correspond to the
sequential numbering used in the corresponding listing.

d) Come back to the main input page, cancel the filter “only polar” and produce
again the full list of subgroups shown in Figure 2.2. By clicking on “Get_irreps”
explore, in a similar form as in the previous example of this tutorial, which of those
symmetries can be reached by the onset of a single irrep order parameter, and therefore,
be the result of a symmetry breaking in accordance with the assumption of a Landau
type phase transition. Check that all maximal subgroups can be result of a Landau type
transition, while from the remaining ones, only some of them satisfy the condition.

Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order
parameter).




e) Come back to the main input page and apply the filter available there to reduce
directly the listed symmetries to those that are possible for a Landau type phase
transition, i.e. those corresponding to the symmetry break associated with a single irrep
order parameter (Figure 2.4). Check that the subgroups provided now by the program
coincide with those that you selected in step d).

5 6

Figure 2.4. Graph obtained with SUBGROUPS, showing the possible space group symmetries
resulting from the distortion of a structure with space group Pnma, having a supercell (a, b, 2c), and
restricted to those that are possible for a Landau-type phase transition, i.e. having a single irrep
associated with its order parameter. The numbers below the space group labels correspond to the
sequential numbering used in the corresponding listing.

We are now going to show that the possible symmetry breakings resulting from the
onset of a distortion according to a single or to several irreps can be fully characterized
if we use an alternative input option, introducing the wave vectors of the observed
distortion instead of the supercell,

f) Come back to the first input page and click on the button “Alternatively give the
modulation wave-vectors” in order to change the input webpage, such that instead of a
supercell, now one or more wave vectors can be introduced. The duplication of unit cell
in this example implies a primary modulation wave vector of type (0, 0, 1/2), and this is
the modulation wave vector that we must introduce in the corresponding window. It is
important to note that wave vector components should be given using the basis of the
conventional or standard reciprocal unit cell. This means that in the case of a parent
space group with centrings, the program assumes that the reciprocal basis of the
conventional centered unit cell is being used for the wave vector components (always in
the form of fractions n/m or integers).



noose |
_ Enter the serial number of the space group: Choose 1

62
The program Subgroups provides the
possible subgroups of a space group
which are possible for a given supercell.
The program provides a list of the set of
space groups or a graph showing the
group-subgroup hierarchy, grouped into (Give the components of the wave vectors in a fractional form, n/m)
conjugacy classes. More optional
information about the classes or
Subgroups is also given‘ Show the independent vectors of the star

Choose the whole star of the propagation vector

Alternatively give the operations of the space group in a non-standard setting

Introduce the wave vector(s)

k1ix 0 K1y 0 K1z 172

Other alternatives for the input of the
program: More wave-vectors needed

g) Check that the list and graph of possible subgroups provided by the program
introducing the wave vector (0,0,1/2) for the distortion, is fully identical to the one that
we have obtained previously introducing the supercell (Figure 2.1), as both conditions
are fully equivalent. But now, we can further filter the possible symmetries depending
on the irrep or irreps associated with the wave vector (0,0,1/2) that are active in the
symmetry breaking.

h) Come back to the first input page with the input wave vector and click on the
button “representations”

Optional: refine further the subgroups of the output giving a set of irreps

Choose the irreps Representations

Then the program provides an extensive information, shown in Figure 2.5, which
includes the standard label associated with the input wave vector, the irrep
decomposition of the space of possible displacive distortions, showing the possible
irreps that can describe such type of distortions. As we have not specified the
Wyckoff positions occupied by the atoms in the structure (button “Wyckoff”), the
program considers the irrep decomposition corresponding to an atom in a general
position, and all irreps for the given wave vector are possible.

Space group: (No. 62)
Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):

Z:(0,0,1/2)

Descomposition of the mechanical representation(s) into irreps.

8d:(x,y,z) —  6%xZ21(2) ® 6%xZ2(2)

Choose the representation(s)

irreps: Z21(2) Z2(2)

(In parentheses, the dimensions of the irreducible representations of the little group of k)

Submit



Figure 2.5. Output and input page of SUBGROUPS when “representations” is clicked, indicating the
label Z associated with the input wave vector (0,0,1/2), and the irrep decomposition of the space of
displacive distortions associated with an atom in a general position for the parent space group
Pnma. One can then choose one or more irreps and reduce the listing of possible symmetries to
those resulting from the onset of order parameter(s) associated with the chosen irrep(s).

i) Choose the irrep Z1 and submit. The input first page is now modified and
the choice of the Z1 irrep for the symmetry breaking distortion is included
and fixed in the input page. Submit. The list of possible symmetries is now
reduced to three, and their graphical representation is shown in Figure 2.3. They
correspond to half of the symmetries obtained in step e) (Figure 2.4). The other
three possible symmetries correspond to the other possible irrep Z2, as it can be
observed if one goes back and chooses instead Z2 as the active irrep in the irrep
filter shown in Figure 2.5.

Figure 2.6. Graph obtained with SUBGROUPS, showing the possible space group symmetries
resulting from the distortion of a structure with space group Pnma, with active wave vector
(0,0,1/2), and restricted to those resulting from the onset of an order parameter transforming
according to the irrep Z1. The numbers below the space group labels correspond to the sequential
numbering used in the corresponding listing.

Thus, using these optional irrep filters, one can determine the possible subgroups
that can be reached by the action of any possible single irrep, and we recover the 6
possible symmetries associated with Landau-type phase transitions. The other
possible subgroups require the concomitant presence of distortions according to
the two possible irreps. The irrep filter allows to choose more than one irrep and
by default provides the possible symmetries associated with the simultaneous
presence of distortions transforming according to all the irreps chosen. Using the
button “more options”, one can change the filter so that the listed ymmetries listed
are all those possible by the onset of one or more of the chosen irreps.

j) Come back to the menu that allows to choose the possible active irreps
(Figure 2.5), choose now both possible irreps Z1 and Z2, submit, and submit
the resulting input page. Check that the the resulting list of subgroups is reduced
to the 5 subgroups (conjugacy classes) that were not listed when choosing
separately Z1 and Z2 as single active irreps. These symmetries are only reachable
by the simultaneous action of both irreps.



k) Click on the “more options” button and choose the option “at least one of
the irreps should be active to reach the subgroup”. The listing now changes to
all possible subgroups that can be reached by either the action of Z1, Z2 or both. As
there are only two possible irreps, this second listing should include in this case all
the 11 subgroups that were obtained without any irrep filter. Thus in this case this
option implies in practice no filter at all, but in more complex cases with several
possible irreps, this option can be used to extract possible symmetries with some
particular set of irreps involved.



Example 3. Possible distorted perovskite structures resulting
from the onset of a degenerate unstable mode.

The cubic parent structure of many perovskite-related structures of composition
ABO3 is unstable for some so-called rigid-unit modes (RUMs), which involve
correlated rotations of their octahedral framework, while maintaining in a first
approximation the rigidity of their constituent octahedral units. A RUM, which is
soft or fully unstable in many perovskites, is for instance the one that becomes
frozen in SrTiO3 below 105K, and results in a phase with space group I4/mcm, its
standard unit cell being related with the cubic perovskite unit cell in the form
(ap+bp, -ap+bp, 2¢c; 0,0,0) [the second part of the transformation indicates the
required origin shift, which is null for a choice of origin in the cubic perovskite
such that Zr lies at the origin]. In this example we will explore using SUBGROUPS
all the possible symmetries that can occur in a perovskite as the result of a
distortion due to this kind of unstable RUMs.

a) Introduce in the main input webpage of SUBGROUPS the parent perovskite
space group Pm-3m (N. 221) and the supercell of the low temperature phase
of SrTi0s3. Change also the centering information indicating that this supercell is |
centered and submit. (Note that the transformed basis vectors are always the
columns of the transformation matrices in the BCS, in accordance with the
convention of the International Tables for Crystallography)

Enter the serial number of the space group: chooseit 221
Alternatively give the operations of the space group in a non-standard setting

Introduce the supercell

Alternatively give the modulation wave-vectors

as= bs= Cs=
1 a -1 a 0 a
+ + + The supercell is centred:
1 b 1 b 0 b [ <)
+ + +
0 c 0 c 2 c

Include the subgroups compatible with intermediate cells.
(It is not applied when only the maximal subgroups are calculated)

Optional: refine further the subgroups of the output giving the Wyckoff positions of the
atoms

Give the Wyckoff positions Wyckoff

We can then see that the list of possible subgroups under this condition is rather



large. Up to 98 non-equivalent subgroups are possible. Remember that this output
lists a representative for each possible conjugacy class of subgroups. The set of
subgroups belonging to each class, but limited to those that keep the lattice defined
by the input supercell, can be seen when clicking on the button “conjugacy class”.

Do not try the group-subgroup graphical option for this list, because with so
many subgroups the graph will have no utility. The fact that the atoms in the
perovskite structure are located in special Wyckoff positions of very high
symmetry can make that many of these symmetries cannot be reached through
displacement of the atoms. If we are only searching for symmetries resulting from
displacive modes, we should then discard these subgroups. This filtering can be
done with the button “Wyckoff”, as shown in the next step.

b) Come back to the input main page and click additionally on “Wyckoff”. This
will make appear an input menu, where one can introduce the type of Wyckoff
positions that are being occupied in the parent structure. Submit after clicking on
the occupied Wyckoff positions.

] ] © ] J ] (x,;x,-x);(Qx,x,-x),(-x,-x,)k); (-x,-x,'-x)

F 5 ; (x,1/2,1/2),(1/2,1/2,-x),(1/2,1/2,x)
(1/2,x,1/2),(1/2,-x,1/2),(x,1/2,1/2)

F 5 o (x,0,0),(0,0,x),(0,0,x)

(0,x,0),(0,-x,0),(-x,0,0)

(@ 3 | d | (1/2,0,0),(0,0,1/2),(0,1/2,0)

[l 3 | ¢ | (0,1/2,1/2),(1/2,1/2,0),(1/2,0,1/2)

@] 1 [ b | (112,1/2,1/2)

@] 1 [ a | (0,0,0)

Submit

We consider here the origin of the perovskite structure such that the B atom
occupies the origin, atom A the unit cell center, and the oxygen atoms are on the
cell edge centers, i.e. (1/2,0,0) and equivalent. It is important to note that the
labels of the irreps describing the symmetry of the modes and order parameters
depend on this origin choice. An equally valid description shifting the origin by
(1/2,1/2,1/2) implies a change of the irrep labels of the modes, although obviously
physically the relevant modes to be discussed will be the same. The reason for this
label change is that the irrep labels depend on the origin chosen for the description
of the symmetry operations.

Having introduced the Ia, 1b and 3d Wyckoff positions occupied by the
atoms in the parent perovskite structure, the list of possible non-equivalent
subgroups reduces to 68. Neverthess, this number is still very large. We can go
back however to the main input menu and click on the appropriate button to
restrict the list to the maximal subgroups.

c) Come back to the main input webpage and click on the restriction “only
maximal subgroups”. The list is then reduced to 10 subgroups (conjugacy



classes):

Input data

Subgroups of the space group : Pm3m (N. 221)
Only maximal subgroups should be shown

Supercell given by: (1,1,0),(-1,1,0),(0,0,2)
Centred supercell: |
Wyckoff positions occupied by the atoms 3d:(1/2,0,0)

1b:(1/2,112,1/2)
1a:(0,0,0)

List of possible subgroups assuming the given wyckoff positions

Get the subgroup-graph More options

N | Group Symbol | Transformation matrix GrouQ-Subgroup Other r.nembers of irreps
index the Conjugacy Class

[ 2 0 0 0 . :

1 Fm§c (NO. 226) ( g (2) g g ) 2=2x1 Conjugacy Class Get irreps
- 2 0 0 1/2 _ :

2 Fm§c (NO. 226) ( g (2) (2) %jg ) 2291 Conjugacy Class Get irreps
[ 2 0 0 1/2 . :

3 Fm§m (NO. 225) ( g (2) g i;; ) 2=2x1 Conjugacy Class Get irreps
[ 2 0 0 0 ; :

4 Fm§m (NO. 225) ( g (2) (2] g ) 2=9x1 Conjugacy Class Get irreps
[ 1 1 o0 0 . | :

5 | 14/mem (No. 140) ( I : ) 6=2x3 Conlugacy Class Getieps
[ 1 1 o0 1/2 ! .

6 | 14/mem (NO. 140) ( -g g _g i;% ) 6=2x3 Conjugacy Class Get irreps
[ 1 1 o0 0 , !

7 liaimmm (NO, 139) ( _(1) 2 _g 1/3 ) 6=2x3 Conjugacy Class Get irreps
[ 1 1 0 1/2 . :

8 lla/mmm (NO. 139) ( _(1) (1) _g l/g ) 6=2x3 Conjugacy Class Get irreps
[ 0 -1 1 1/2 — = -

9 | Imma (No. 74) ( _g (l) é g ) 12=2x6 ey — etineps
[ 0o 1 1 1/2 ) -

10| Imma (NO. 74) ( _(2) (1) _é l/g ) 12=2x6 Conjugacy Class Get irreps

Figure 3.1. List obtained showing the possible maximal space group symmetries for a distorted
perovskite structure having an I-centered unit cell (a+b, -a+b, 2c), or equivalent, with respect to the
cubic perovskite unit cell. The symmetries are described as subgroups of the space group Pm-3m.
Each subgroup is a representative of a set of subgroups that are physically equivalent and belong to
the same conjugacy class (see text).

Among these 10 maximal symmetries, the conjugacy class corresponding to
the symmetry of the low temperature phase of SrTiO3 is present. It is the one
numbered as 5 in the list. To be noted that there are two conjugacy classes with
subgroups of type 14/mcm, and they are distinguished by the position of its
standard origin with respect to the one of the parent structure.



d) Click on the button “conjugacy class”. One can see then that the conjugacy
class numbered as 5 includes 3 subgroups, the third one corresponds to the
specific one mentioned above for SrTiOs. The three subgroups of this class are
physically equivalent and correspond to different equivalent orientations of the
structure of SrTiOz with respect to the cubic parent perovskite, representing the
three possible orientational domains of this phase.

Subgroups that belong to the same conjugacy class,
limited to those compatible with the given supercell or the
supercell determined by the given wave vector(s).

. . |Group-Subgrou . .
N | Group Symbol | Transformation matrix pin dexg P 'Symmetry operations [Set of subgroups*| irreps
1 1 0 0 Plain text format List of subgroups
5.1 |l4/mcm (No. 140) ( 0 0 -2 0 ) 6=2x3 Get irreps
-1 1 0 0 Matrix form Graph of subgroups
0 0 -2 0 Plain text format List of subgroups
5.2 14/mem (No. 140) ( .11 o0 0 ) 6=2x3 Getirreps
1 1 0 0 Matrix form Graph of subgroups
1 -1 0 0 Plain text format List of subgroups
5.3 |[4/mcm (No. 140) ( 11 0 0) 6=2x3 Get irreps
0 0 2 0 Matrix form Graph of subgroups

* List or graph of subgroups that are related with the chosen group through group-subgroup relation.

Figure 3.2. List of subgroups belonging to the conjugacy class with space group type 14/mcm with
unit cell unit cell (a+b, -a+b, 2c¢) and having as representative the first one of the list, which is the
one included in the list of Figure 3.1.

e) For the specific orientation/subgroup listed as N. 3 in the list of Figure 3.2,
click on “Get irreps”. This subgroup and the parent group is then directly
communicated to the program Get_irreps, which provides the irreducible
representations (irreps) of the parent structure that are compatible with this
specific symmetry for the distorted structure. This means that one gets the irreps
of the parent structure that can characterize the degrees of freedom allowed in a
distorted structure with this symmetry and, in accordance with Von Neumann
principle are set free in this structure. The information is completed for each irrep
with the information on the subspace within the irrep space into which the irrep
distortion (order parameter) must be constrained and the so-called isotropy
subgroup associated with this irrep (restricted to the indicated subspace).

Figure 3.3 shows the output for our particular example. For each irrep, the
list includes the relevant wave vector(s) (in bold) and the irrep label, the irrep
subspace in parenthesis, the isotropy subgroup and a link called “matrices of the
irreps” to the database REPRESENTATIONS SG, where the matrix form of the irrep
can be retrieved. This latter information is relevant for the description of the
relevant irrep subspace. The irrep labels used in this program are those used by
the ISOTROPY suite (iso.byu.edu), but the specific matrix form of the irreps, which
depends on the choice of basis, may differ from the one used in that reference.
Therefore it is is important to stress that the symbol for the order parameter
direction in the second column, which depends on the matrix choice for the irrep,



is not necessarily the same as in ISOTROPY. The irrep isotropy subgroups of the
parent space group Pm-3m, are expressed, as usual, as a space group type and a
transformation (P,p) from the standard basis of the parent space group to its
standard setting.

It can be seen in Figure 3.3 that the isotropy subgroup of one of the
compatible irreps, namely R4* with wave vector R (1/2,1/2,1/2), coincides with
the actual subgroup of type I14/mcm that is being considered. This implies that the
symmetry break Pm-3m --- > [4/mcm (a+b, -a+b;0, 0, 0 ) can be realized through a
Landau type phase transition, with an order parameter having the transformation
properties of this irrep (and the direction specified). The irrep is 3-dimensional
and the restricted direction within this 3-dimensional irrep space is specified as
(a,0,0) in the basis used.

Group—subgroup Transformation matrix
_ 1 -1 0 0
Pm3m (N. 221)—I4/mcm (N. 140) ( (1) é <2> g)

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors |lirreps and order parameters isotropy sybgroup- link to the irreps
transformation matrix
GM1*: () Pm3m (No. 221)
GM: (0,0,0) P4y a,b,C;?,\,IO,O1 23) matrices of the irreps
+ 'mmm (No.
GM3™ (.0) a,b,c;0,0,0

. ¥ 14/mcm (No. 140) . s

R: (1/2,1/2,1/2) R4 . (8,0,0) a+b,-a+b,2¢:0,0,0 matrices of the irreps

Figure 3.3. Output obtained in step e, when Get_irreps is applied for the relevant subgroup. The set
of irreps and corresponding irrep subspaces compatible with the subgroup are listed, together
with the corresponding isotropy subgroups (i.e. the symmetry mantained by the corresponding
irrep distortion restricted to the indicated subspace).

f) Come back to the list of subgroups of the conjugacy class, shown in Figure
3.2, and check that the call to Get_irreps for any of these subgroups gives an
analogous output, but with the direction changed for the R4* subspace. This
means that the other subgroups are attained by the same 3-dimensional order
parameter, directed along different, but physically equivalent directions within the
3-dim R4* irrep space.

Figure 3.4 depicts the R4* distortion mode present in the structure of SrTiO3,
showing its rigid unit mode (RUM) character. Obviously, physically equivalent
distortions are realized when the axis of the octahedra rotations is changed to the
other symmetry equivalent directions on the xy plane, which in the tetragonal
setting of the figure are along a+b and a-b. These equivalent distortions
correspond to the other two possible subgroups of the conjugacy class listed in



Figure 3.2, with different but equivalent directions for the R4+ 3-dim order
parameter.

Figure 3.4. Graphical representation of the R4+ distortion mode present in tetragonal structure of
SrTiOs3 (obtained from its experimental structure using AMPLIMODES and VESTA). The distortion
mode is clearly a rigid unit mode involving antiphase rotations of the octahedra around the z cubic
axis. The a,b,c basis is the figure is the tetragonal one. (For more information on methods to
visualize distortion mode see the tutorial on this matter on the webpage of AMPLIMODES).

The three degenerate modes of the type shown in Figure 3.4 span a 3-dim
space and an arbitrary combination of them will produce a general R4* distortion,
represented by an arbitrary direction (a,b,c) in the Rs* irrep space. The only
symmetry operations that will preserved by a R4* distortion of general type (a,b,c),
are those to which the irrep Rs4* associates the 3x3 identity matrix. These
operations form a subgroup of the parent space group, the so-called kernel of the
irrep, which is then the minimal symmetry that will be maintained by an arbitrary
R4+ distortion. For special combinations of the three degenerate modes, i.e. special
directions of the 3-dim R4* order parameter, the preserved symmetry can be
higher, corresponding to supergroups of the mentioned kernel, the so-called irrep
epikernels or irrep isotropy subgroups. One example is the (a,0,0) direction,
corresponding to the presence of only one of the modes and resulting in a
subgroup of type I4/mcm discussed above. But there are other possible special
directions or combinations of the tree RUMs, yielding other possible isotropy
subgroups, and the program can provide a list of all of them, as shown in the next
steps.

g) Come back to the first input page and click on the button “Alternatively give
the modulation wave-vectors” in order to change the input webpage, such that instead
of a supercell, now one or more wave vectors can be introduced. From the result above
we know that the relevant wave vector of the distortion mode in SrTiO3 is (1/2,1/2,1/2).
We introduce then this vector, set again the Wyckoff positions that are occupied and
click on “representations”.



Space group: Pm3m (No. 221)

Set of chosen modulation wave-vectors
k1=(1/2,1/2,1/2)

Include the subgroups compatible with intermediate cells.

(It is not applied when only the maximal subgroups are calculated)

Wyckoff positions of the atoms
3d:(1/2,0,0)

1b:(1/2,1/2,1/2)

1a:(0,0,0)

Optional: refine further the subgroups of the output giving a set of irreps
Choose the irreps Representations

Optional: possible limitations of the subgroup list
(Check only one option on the left and the specific value on the right)
(Check only one option on the left and the specific value on the right)
© Lowest space group to consider chooseit 1

The program provides then a second input page, shown in Figure 3.5, which
includes the irrep decomposition of the space of possible displacive distortions,
showing the possible irreps that can describe them.

Space group: Pm3m (No. 221)
Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Non bolded irreps are incompatible with the given Wyckoff positions
Bolded irreps are compatible with at least one given Wyckoff position
Red colored irreps are compatible with all the Wyckoff positions given

Possible irreducible representations

Wave-vectors of the star (1 vector):
R:(1/2,1/12,1/2)
Descomposition of the mechanical representation(s) into irreps.

3d:(1/2,0,0) —  1xR1+(1) @ 1xR3+(2) © 1xR4+(3) @ 1xR5+(3)

1b:(1/2,1/2,1/2) —  1xR5+(3)

1a:(0,0,0) —  1xR4-~(3)

Choose the representation(s)

irreps: R1+(1) R1-(1) R2+(1) R2-(1) R3%#(2) R3-(2)®%R4+(3) R4-(3) R5+(3) R5-(3)

(In parentheses, the dimensions of the irreducible representations of the little group of k)

Figure 3.5. Output and input page of SUBGROUPS when “representations” is clicked, indicating the
the irrep decomposition the space of displacive distortions (mechanical representation) associated
with the chosen Wyckoff positions of the parent space group Pm-3m, for the wave vector R
(1/2,1/2,1/2). One can then choose one or more of the listed possible irreps and reduce the listing

of possible symmetries to those resulting from the onset of order parameter(s) associated with the
chosen irrep(s).



The page indicates the irrep decomposition of the mechanical
representation of the displacements of the atoms associated with each of the
occupied Wyckoff positions. One can then see that only 4 of the 10 possible irreps
are relevant for a perovskite structure, and among them, as expected, the Rs4* irrep
is present. The user can now choose one or several of these possible irreps and see
the possible symmetries resulting from the presence of distortions corresponding
to these irreps. we are interested in possible symmetries resulting from the
freezing of some combination of the RUMs correponding to the R4* irrep.

h) Choose the R4+ irrep and submit.

The program then lists all possible distinct space group symmetries
(subgroups of the parent Pm-3m) that can result from an order parameter with
R4+ symmetry, i.e.,, in our case, from the combination of the three degenerate
RUMs of the type shown in Figure 3.4. The output is shown in Figure 3.6.

nput data

Subgroups of the space group : Pm3m (N. 221)
_owest space group to consider: P1(N. 1)
Modulation wave-vectors (1/2,1/2,112)
Wyckoff positions occupied by the atoms 3d:(1/2,0,0)
1b:(1/2,1/2,1/2)
1a:(0,0,0)

rreducible representations
R:(1/2,1/2,1/2) R4+

List of possible subgroups assuming the given wyckoff positions and that have as primary irreps all the irreps given

Get the subgroup-graph More options

Group-Subgroup| Other members of

N | Group Symbol | Transformation matrix index lthe Conjugacy Class

irreps

-1 0 2 0
0 -1 -2 0
1 -1 2 0

Conjugacy Class Get irreps.

1| R3c (No. 167) 8=2x4

Conjugacy Class Get irreps.

2 |I4imem (No. 140) 6=2x3

Conjugacy Class Getirreps

Conjugacy Class Getirreps

4| C2ic(No. 15) 24=2x12

Conjugacy Class Getirreps

5| C2/m (No. 12) 24=2x12

Conjugacy Class Getirreps

6| PT(No.2) 48=2x24

(
(
AP
(
(
(

)
)
)
)
)

Figure 3.6. List obtained with SUBGROUPS showing the possible space group symmetries for a
distorted structure derived from a a Pm-3m parent structure, as the result of a distortion according
to the R4+ irrep. The symmetries are described as subgroups of Pm-3m. Each subgroup is a
representative of a set of subgroups that are physically equivalent and belong to the same
conjugacy class.

One can see in Figure 3.6 that the possible subgroups (strictly, conjugacy
classes of subgroups) are six, P-1 being the minimal symmetry possible, being the
kernel of the chosen irrep.

i) In order to see the group-subgroup hierarchy of these six different
possible symmetries click on the “get the subgroup-graph” button. The result
shown in Figure 3.7, where for each symmetry the particular special direction
required for the R4+ order parameter is also indicated. This additional information
can be retrieved by clicking on the “Get_irreps” button of the Table shown in
Figure 3.6, which provides for each possible subgroup an output analogous to the



one of Figure 3.3.

Figure 3.7 shows all the possible symmetries that a perovskite can adquire
as the result of the freezing of some combination of the three R4+ distortions of the
type shown in Figure 3.4. These distortion modes, being RUMS, are expected to
cost little energy, or even be unstable and become frozen. One therefore expects
that the symmetries shown in Figures 3.6 and 3.7 are realized in some perovskite-
like materials, and indeed this is the case. We indicate in Figure 3.7 for each of the
space groups (except for the minimal kernel) a specific compound where this
particular symmetry has been observed.

4 5
(a,a,b) \ / (a,b,0)
Pi
6
(a,b,c)

Figure 3.7. Graph obtained with SUBGROUPS showing the possible space group symmetries for a
distorted structure derived from a a Pm-3m parent structure, as the result of a distortion according
to the R4+ irrep. The appropriate direction of the order parameter within the 3-dimensional irrep
space is also indicated below each subgroup. In addition, we have added in blue besides each
subgroup an example of material, if existing, where this symmetry is realized.

For instance, the compound CeAlO3 exhibits a phase with space group R-3c
as the result of a combination with equal amplitudes of the three R4- distortion
modes of the type shown in Figure 3.4 ( direction (a,a,a) ). The R4- distortion mode
involved in such structure is depicted in Figure 3.8. The relation between the
distortion mode shown in this figure and the one in Figure 3.4, both corresponding
to the same R4+ irrep, but associated with different directions or combinations of
the three basis modes, can be intuitively guessed, but if one goes to lower
symmetries, the relationships among the different structures is far from obvious.
Figure 3.9 depicts for instance the R4- distortion mode with direction (a,a,b),
which is observed in LaCoOs.



Figure 3.8. Graphical representation of the R4+ distortion mode present in the rhombohedral R-3c
structure of CeAlO3 (obtained from the experimental structure using AMPLIMODES and VESTA).
The unit cell in the figure is the rombohedral one. The distortion mode is clearly a rigid unit mode
involving antiphase rotations of the octahedra around the z rombohedral axis (direction (111) in
the cubic setting).

Figure 3.8. Graphical representation of the R4+ distortion mode present in the monoclinic C2/c
structure of LaCoO3 (obtained from the experimental structure using AMPLIMODES and VESTA).
The unit cell in the figure is the monoclinic one. The distortion mode is a rigid unit mode involving
rotations of the octahedra around some direction on the monoclinic plane, according to a linear
combination of type (a,a,b) of the three basis R4+ modes representing rotations around the three
cubic axes (see Figure 3.4).

SUBGROUPS can be combined with the program TRANSTRU, also in the Bilbao
Crystallographic Server, to create an initial structural model of a distorted
structure under one or more of the symmetries obtained with SUBGROUPS. These
structural models can then be transported in CIF format for their eventual fit with
any refinement program to experimental data. Let us see for instance how this CIF
file is created for the C2/c structure observed in LaCoO:s.

k) Open the program TRANSTRU and load the structure of LaCoO3 in its
parent cubic configuration. The structure can be an experimental or a virtual



idealized one, and can be loaded either manually on the available window, or as a
CIF file:

Transform Structure

Structure Data Examinar...  No se ha seleccionado ningn archivo.
[in CIF format] HINT: [ The option for a given filename is preferential ]

221
3.82 3.82 3.82 90. 90. 90.
3
La 1 1b 0.500000 0.500000 0.500000
Co 1 la 0.000000 0.000000 0.000000
(o] 1 3d 0.500000 0.000000 0.000000

High Symmetry
Structure

Transform structure to a subgroup basis ©@
Transform structure with an arbitrary matrix

Show

This gives place to a second webpage where the subgroup under consideration
must be defined.

1) We introduce in this second menu the subgroup C2/c as defined in listing
obtained with SUBGROUPS and shown in Figure 3.6:

Transform Structure

221

3.82 3.82 3.82 90. 90. 90.

3

La 1 1b 0.500000 0.500000 0.500000
Co 1 la 0.000000 0.000000 0.000000
(o] 1 3d 0.500000 0.000000 0.000000

Structure

Low symmetry
Space Group ITA 15

number
Transformation
Matrix:
Linear part Origin Shift
1 -1 -1 0
In matrix form: 2 o o 1”2

-1 -1 1 12

m) On the resulting output click on the button to download a CIF file of the
input structure transformed in a description under the input C2/c subgroup,
termed “low symmetry structure”:



Transform structure
Transformation matrix: a+2b-c,-a-c+1/2,-a+c+1/2

High symmetry structure

221

3.82 3.82 3.82 90. 90. 90.

3

La 1 1b 0.500000 0.500000 0.500000

Co 1 la 0.000000 0.000000 0.000000

] 1 3d 0.500000 0.000000 0.000000
Visualize this structure CIF File Cartesian Coordinates

Low symmetry structure

015

9.357051 5.402296 5.402296 90.000000 125.264397 90.000000

4

La 1 de 0.000000 0.750000 0.750000

Co 1 4c 0 0.250000 0.500000

0 1 8f 0. 0.000000 0.250000

o 1.2 de 0 0.250000 0.750000
Visualize this structure CIF Fi Cartesian Coordinates

We have now a CIF file with the atomic positions corresponding to the ideal
perovskite structure, but subject to the lower symmetry described by the input
subgroup of Pm-3m, which is ready for refinement using any refinement program.



