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Buerger's classification of structural phase transitions 

 

 

reconstructive:   primary (first-coordination) chemical bonds are broken and reconstructed →  

                          discontinuous enthalpy and volume changes  →  first-order thermodynamic 

                           character (coexistence of phases at equilibrium, hysteresis and metastability) 

 

displacive:    secondary (second-coordination) chemical bonds are broken and reconstructed, primary 

                     bonds are not  → small or vanishing enthalpy and volume changes  →  

                      second-order or weak first-order thermodynamic character 

 

order/disorder:    the structural difference is related to different chemical occupation of the same   

                           crystallographic sites, leading to different sets of symmetry operators in the two 

                           phases  →  vanishing enthalpy and volume changes  →  

                           second-order thermodynamic character 
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Symmetry aspects of Buerger’s phase transitions 

 

 

♦ Displacive and second-order phase transitions:  

-  the space group symmetries of the two phases show a group/subgroup relationship 

-  the low-symmetry phase approaches the transition to higher symmetry continuously; 

-  the order parameter η measures the 'distance' of the low-symmetry to the high-symmetry     

  (η=0) structure 

 

T-driven transition: usually the symmetry of the l.t. phase is a subgroup of that of the h.t. phase 

p-driven transition:  it is hard to predict which one of the two phases (l.p. and h.p.) is more 

                                 symmetric   
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♦ Reconstructive phase transitions:  

- the space group symmetries of the two phases are unrelated 

- the transition is quite abrupt (no order parameter) 

 

 but: 

- any kinetic mechanism of the transformation must be based on an intermediate structure whose  

  space group is subgroup of both space groups of the two end phases  

- the intermediate state transforms continuously from one to the other end phase, according to the 

change of the 'reaction coordinate', or kinetic order parameter    

 

Examples of simple reconstructive phase transitions:    

 

HCP to BCC, FCC to HCP and BCC to FCC in metals and alloys  

rocksalt (Fm3m) to CsCl-type (Pm3m) structure in binary AB systems: C.N. changes from 6 to 8 

zincblende (F43m) to rocksalt (Fm3m) structure in binary AB systems: C.N. changes from 4 to 6 
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Mechanisms of reconstructive phase transitions and symmetry of the intermediate states 

 

G1 (S.G. of phase 1)   →   H  (S.G. of intermediate state)  →  G2 (S.G. pf phase 2) 

 

                                                 H ⊂ G1,   H ⊂ G2,    G1 ⊄  G2                                                          (1) 

 

Let T1, T2 and T be the translation groups of G1, G2 and H, respectively, and T1 ⊆ T2. Then: 

 

                                                         T ⊆ T1,  T ⊆ T2                                                                        (2) 

 

In the simplest case T1=T2, so that G1 and G2 have the same translation group (i.e., the primitive 

unit-cells of phases 1 and 2 have the same volume, except for a minor difference due to the ∆V jump 

of first-order transitions). 

The translation group of H may coincide with that of G1 and G2 (T=T1), but it may also be a 

subgroup of it (T ⊂  T1, i.e., the volume of the primitive cell of the intermediate state is an integer 

multiple of that of the end phases, called the index ik of the superlattice). 
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The index of the superlattice T of T1 is equal to the klassen-gleich index of the subgroup H of G1. In 

the general case, we have then that: 

 

ik,1 = T1/T = V/V1,       ik,2 = T2/T = V/V2;   hence:   ik,1/ik,2 = V2/V1. 

 

V, V1 and V2 are the volumes of the primitive unit-cells associated to subgroup H and groups G1 and 

G2, respectively.  

       As the volume per formula-unit should be the same in all cases, it turns out that: 

 

V/Z(H) = V1/Z(G1) = V2/Z(G2);    it follows that:  ik,1 = Z(H)/Z(G1),   ik,2 = Z(H)/Z(G2),   

 

                                              ik,1/ik,2 = V2/V1 = Z(G2)/Z(G1).                                                         (3) 

 

In other words, the ratio of the two k-indexes of the subgroup H is inversely proportional to the ratio 

of the corresponding numbers of f.u.  in the primitive unit-cell volumes of G1 and G2. 
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If a conventional centred (non-primitive) unit-cell is used, then the relations Vc = fcV, Zc = fcZ 

should be used, where fc is the number of lattice points contained in the conventional cell.  

 

The relation (3) gives the first general constraint on the determination of the common subgroups H. 

 

The second important constraint concerns the atomic displacements during the reconstructive phase 

transition: 

 

Atoms must remain in the same types of Wyckoff positions of  H  along the entire path  G1  →  G2. 

 

If that were not true, then the H symmetry would be broken to allow atoms to change their Wyckoff 

positions. 

 

As a consequence, the Wyckoff positions of corresponding atoms in G1 and G2 must transform into 

the same Wyckoff position of the common subgroup H. 
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Systematic search for the common subgroups H of the symmetry groups G1 and G2: 

 

1) Method of Stokes and Hatch (Phys. Rev. B 65 144114 (2002)) 

The first step of a systematic search of the possible intermediate states involves the search for all 

common superlattices of phases 1 and 2.   

  

                          Q1                                   Q2                                  Q1Q2
-1 

              {a1}  →   {a},         {a2}  →   {a},        {a1}  →   {a2}       
 

Q1 and Q2 are the transformation matrices from the primitive unit-cells of phases 1 and 2 to the 

primitive cell of the intermediate structure. Their components must be integer numbers. 

 

det(Q1) and det(Q2) are the indexes ik,1 and ik,2 of the intermediate superlattice with respect to the 

lattices of phase 1 and 2, respectively. Q1Q2
-1 is the transformation matrix relating the lattices of the 

two end phases, for the transition mechanism considered  -  Important for a comparison with the 

experimental relative crystallographic orientation of the end phases (if available) ! 
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Search for common superlattices: 

all possible combinations of two sets of nine integers, corresponding to the components of the Q1 

and Q2 matrices, are considered. 

 

 Two limiting conditions: 

- a reasonable limit on the maximum length of the primitive lattice basis vectors of T 

- a reasonable limit on the total strain involved in the T1 → T2 transformation, which can be 

calculated from the Q1Q2
-1 matrix. 

 

Once the superlattice T is defined, its symmetry point group P has to be found;  

Let P1 and P2 be the point groups of T1 and T2, respectively:   then P = P1 ∩ P2.  

P is found simply by selecting the point group operators of G1 and G2 which, in the reference frame 

of T, are represented by matrices with integer components. 

The point group P' of H must be a subgroup of P:    P'  ⊆  P.  

P' and H are found by selecting, within the symmetry operators of G1 and G2, only those which are 

compatible with P and T.  
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2) Program TRANPATH of the Bilbao Crystallographic Package 

 

•  A separate search is performed for the subgroups of G1 and G2, and the common subgroup types 

shared by both symmetry groups are determined (COMMONSUBS module), within the constraint of 

a maximum value of the ik index: ik,1 ≤ ik, ik,2 ≤ ik.  

     For a given common subgroup type H, the lists of all subgroups H1
p (p=1,...m) ⊂ G1 of the first 

branch, and of all subgroups H2
q (q=1,...n) ⊂ G2 of the second branch are obtained. The indexes p 

and q label different classes of conjugated subgroups; conjugated subgroups of the same class are 

completely equivalent and then they are represented by a single member of the class. 

 

•  Every H1
p or H2

q subgroup is associated to a transformation matrix Q relating the basis vectors of 

G1 to those of the subgroup, according to  (a,b,c)H = (a,b,c)GQ. This matrix is by no means unique, of 

course, because different basis can be chosen to represent the same lattice. 
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• Each pair (H1
p,H2

q) defines an independent possible transformation path relating G1 and G2 with 

common subgroup type H. Every path is checked for compatibility of the Wyckoff position splittings 

in the two G1 → H1
p and G2 → H2

q  branches (WYCKSPLIT module). The WP's occupied by a 

given atom in G1 and G2 must give rise to the same WP for that atom in H. 

 

• The lattice strain in the H reference frame is computed for the G1 → G2 transformation, and its 

value is compared to a threshold given in input to TRANPATH. 

 

• The coordinates of all independent atoms are computed in the H reference frame for the two G1 

and G2 end structures. The corresponding atomic shifts are compared to a threshold value given in 

input to TRANPATH.  
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B3/B1 reconstructive phase transition (cf. Catti, PRL 2001 and PRB 2002) 

 

zincblende (G1= F43m) to rocksalt (G2= Fm3m) structure in ZnS and SiC under pressure 

 

Two examples of maximal common subgroups, giving rise to well-studied transition mechanisms: 

H = R3m,  Imm2 

 

F43m    (B3)     Z=4        M    ¼, ¼, ¼   (4c, 43m);      X    0, 0, 0    (4a, 43m)             aI 
 
Fm3m   (B1)     Z=4        M    ½, ½, ½   (4b, m3m);      X   0, 0, 0    (4a, m3m)             aII 
 
 
Intermediate states: 
 
 
I - H = R3m         Z=1         M     x, x, x    (3a, 3m);            X    0, 0, 0    (3a, 3m) 
 
order parameter:    x(M) (¼→ ½) 
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F43m →  R3m                             Q1 = 
















0  ½  ½
½  0  ½
½  ½  0

                         Q1
-1 = 

















1- 1   1  
1   1- 1  
1   1   1 -

                                                 

Fm3m →  R3m                   Q2 = Q1 =  
















0  ½  ½
½  0  ½
½  ½  0

 

F43m → Fm3m                  Q1Q2
-1  =   

















1   0   0 
0   1   0 
 0   0   1 

                                                                       

 
R3m (B3):     aR = aI/√2,   αR = 60°;                               R3m (B1):      aR = aII/√2,   αR = 60°    
 
 
II - H = Imm2       Z=2         M    0, ½, z (¼→ ½)  (2b, mm2);      X   0, 0, 0  (2a, mm2) 
 
Order parameter:    z(M) 
 

F43m  → Imm2                    Q1 = 
















1   0      0
0  ½    ½
0   ½-  ½

                     Q1
-1=  

















1   0    0 
0   1    1-
0   1    1  
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Fm3m →  Imm2                   Q2 = 
















0    0    1
½   ½- 0

 ½   ½   0
                      Q2

-1 =  
















0    1    1
0   1-  1
1    0  0

                                                    

F43m  → Fm3m            Q1Q2
-1  =  

















0      1     1  
½   ½-  ½  
½    ½   ½- 

       

 
 
Imm2 (B3):    a = b=aI/√2,    c = aI;                           Imm2 (B1):    b = c =aII/√2,    a= aII       
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IImmmm22  aanndd  RR33mm  mmeecchhaanniissmmss  ooff  tthhee  BB33//BB11  hhiigghh--pprreessssuurree  pphhaassee  
ttrraannssiittiioonn    

IImmmm22  

RR33mm  
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IImmmm22  ppaatthhwwaayy  ooff  tthhee  BB33//BB11  pphhaassee  ttrraannssiittiioonn  ooff  ZZnnSS  aanndd  SSiiCC  

       BB33((FF433mm))  IImmmm22 BB11((FFmm3mm)) 
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Enthalpy of the intermediate state of SiC along the B3-B1 transformation path vs. order parameter ξ  

at several p values for two different pathways:  Imm2 (closed symbols) and R3m (dashed lines)  
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Example:   rocksalt (G1= Fm3m) to CsCl-type (G2= Pm3m) structure in NaCl under pressure 

 

Fm3m   (B1)     Z=4        M    0, 0, 0 (4a, m3m);    X   ½, ½, ½  (4b, m3m)             aI 
 
Pm3m   (B2)     Z=1        M    0, 0, 0  (1a, m3m);   X  ½, ½, ½   (1b, m3m)             aII 
 
 
Intermediate states: 
 
 
I - H = Pmmn       Z=2      M    ¼, ¼, z (¼→ ½)  (2a, mm2);      X   ¼, ¾, z+ ½ (¾ → 0)   (2b, mm2) 
 

Fm3m → Pmmn                    Q1 = 
















½  ½-0
½  ½  0
0   0   1

                     Q1
-1=  

















1    1   0 
1-  1   0 
0   0    1 

                                                        

Pm3m →  Pmmn                   Q2 = 
















− 0  11
 1  0   0

0  1   1
                      Q2

-1 =  
















0    1   0
½- 0  ½
½   0  ½

                                                    

Fm3m → Pm3m            Q1Q2
-1  =  

















¼    ½  ¼-
¼- ½   ¼ 
½     0   ½ 

      (Q1Q2
-1)-1  =  

















1    1-  1 
1    1   0 
1-  1    1 
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Pmmn (B1):    a = aI,    b= c = aI/√2;                           Pmmn (B2):   a = b = aII√2,      c = aII 
 
 
 
II1 - H = R3m         Z=1         M    0, 0, 0 (3a, 3m);    X   ½, ½, ½  (3b, 3m) 
 
 

Fm3m →  R3m                             Q1 = 
















0  ½  ½
½  0  ½
½  ½  0

                         Q1
-1 = 

















1- 1   1  
1   1- 1  
1   1   1 -

                                               

Pm3m →  R3m                   Q2 = Q2
-1 = 

















1  0  0
0  1  0
0  0  1

 

Fm3m → Pm3m            Q1Q2
-1 = Q1 =  

















0  ½  ½
½  0  ½
½  ½  0

      (Q1Q2
-1)-1 =  Q1

-1 = 
















1- 1   1  
1   1- 1  
1   1   1 -

                                              

 
R3m (B1):     aR = aI/√2,   αR = 60°;                               R3m (B2):         aR = aII,   αR = 90° 
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II2 - H = P21/m        Z=2         M    x 1(¼), ¼, z1(0)   (2e, m);    X   x2(¾), ¼, z2(½)    (2e, m) 
 
 

Fm3m →  P21/m                                     Q1 =  
















0    0     1
½  ½- ½
½  ½    ½

               Q1
-1 =  

















1-  1    1
0    1-  1
1    0   0

                                           

Pm3m → P21/m,      R3m → P21/m        Q2 = 
















1   0   0
0   1    1
0   1-  1

                  Q2
-1 = 

















1    0   0  
0   ½  ½-
0   ½   ½ 

                           

Fm3m → Pm3m                               Q1Q2
-1 = 

















0  ½  ½
½  0  ½
½  ½  0

          (Q1Q2
-1)-1 = 

















1- 1   1  
1   1- 1  
1   1   1 -

                                             

 
 
P21/m (B1):     a  = aI√(3/2),   b = c = aI/√2,  β = arcos(1/√3) = 54.74°;                                       
 
P21/m (B2):         a = b = aII√2,      c = aII,     β = 90°; 
 
P21/m (R3m):   a = aR[2(1+cosαR)]1/2,   b = aR[2(1-cosαR)]1/2,  c = aR,   β = arcos[cosαR/cos(αR/2)] 
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II3 - R3m          Z=4         M1  0, 0, 0  (3m);                        M2   x1(½), x1(½), z1(0)   (3m) 
                                          X1  x2(½), x2(½),x2(½)  (3m);     X2    x3(0), x3(0), z2(½)   (3m) 
 
 

Fm3m →  R3m                               Q1 = Q1
-1 = 

















1  0  0
0  1  0
0  0  1

                                                                                      

Pm3m →   R3m,  R3m → R3m               Q2 = 














−

1- 1   1  
1   1- 1  
1   1   1

                     Q2
-1 = 

















0  ½  ½
½  0  ½
½  ½  0

                                       

Fm3m → Pm3m                              Q1Q2
-1  =   

















0  ½  ½
½  0  ½
½  ½  0

            (Q1Q2
-1)-1 = 

















1- 1   1  
1   1- 1  
1   1   1 -

 

 
 
R3m (B1):     aR’ = aI,  αR = 90°;            
 
R3m (B2):         aR’ = aII√3,   αR = arcos(-1/3)=109.47°;              
 
R3m (R3m):      aR’ = aR(3-2cosαR)1/2,  αR = arcos[(2cosαR-1)/(3-2cosαR)] 
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RR3mm  ppaatthhwwaayy  ooff  tthhee  BB11//BB22  pphhaassee  ttrraannssiittiioonn    

        BB11((FFmm3mm))                                                      RR3mm                                                    BB22((PPmm3mm))  
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    BB11((FFmm3mm))                                                    PPmmmmnn                                                    BB22((PPmm3mm))  

  
PPmmmmnn  ppaatthhwwaayy  ooff  tthhee  BB11//BB22  pphhaassee  ttrraannssiittiioonn    
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BB11  

BB22  

PP2211//mm  

PP2211//mm  ppaatthhwwaayy  ooff  tthhee  BB11//BB22  pphhaassee  ttrraannssiittiioonn  
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Enthalpy of the intermediate state of NaCl along the B1-B2 transformation path vs. order parameter 

ξ  for three different pathways:  rhombohedral R3m, monoclinic P21/m orthorhombic Pmmn  
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Intermediate metastable Cmcm phase along the P21/m pathway:  

 TlI-like structure with both Na and Cl in seven-fold coordination 
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Na-Cl8 (full diamonds) and Na-Cl7 (full triangles) interatomic distances versus the order parameter 

ξ along the P21/m pathway; open diamonds indicate the corresponding Na-Cl distance along the 

Pmmn path. 
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Enthalpy of the intermediate state of NaCl along the B1-B2 transformation path vs. order parameter 

ξ  at three p values for two different pathways:  P21/m (closed symbols) and Pmmn (open symbols)  
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Multiple reconstructive phase transition of AgI under pressure (cf. Catti, PRB 2005) 

 

zincblende (G1= F43m) to anti-litharge (G2=P4/nmm) to rocksalt (G3= Fm3m) structure 

 

F43m         Z=4        Ag   (4a)  0, 0, 0;         I   (4c)    ¼, ¼, ¼;                        aI 
 
P4/nmm     Z=2        Ag   (2a)   0,0,0;           I   (2c)    0, ½, z;      origin 1       aIII, cIII 
                                 Ag   (2a)   ¼, -¼, z;      I   (2c)    ¼, ¼, z;     origin 2 
 
Fm3m        Z=4        Ag    (4a) 0, 0, 0;          I   (4b)   ½, ½, ½                        aII 
 
 
Transformation pathway within the non-maximal common subgroup Pm (derived from maximal 

common subgroup Pmm2): 

 
Intermediate state: 
Pm      Z=2             Ag1   (1a)    0,0,0;                 Ag2  (1b)   x(Ag2), ½, z(Ag2);    
                                 I1     (1b)  x(I1), ½, z(I1);      I2   (1a)     x(I2), 0, z(I2)  
 
                                Order parameter : z(Ag2)  (½→ 0) 
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F43m  → Pm                             Q1 = 
















1   0      0
0  ½    ½
0   ½-  ½

                     Q1
-1=  

















1   0    0 
0   1    1-
0   1    1  

                                                   

P4/nmm   → Pm                         Q2 = 
















1   0   0 
0   1   0 
 0   0   1 

 

F43m  → P4/nmm         Q1Q2
-1= Q1= 

















1   0      0
0  ½    ½
0   ½-  ½

 

Fm3m →  Pm                             Q3 = 
















½    0   ½
0     1    0

 ½-  0   ½
                      Q3

-1 =  
















1   0   1-
0    1   0 
1    0   1 

                                               

P4/nmm  → Fm3m       Q2Q3
-1= Q3

-1= 
















1   0   1-
0    1   0 
1    0   1 

                                                           

 
 
Pm (zincblende):    a = b = aI/√2,    c = aI;                       Pm (anti-litharge):    a = b = aIII,    c = cIII       
 
 

Pm (rocksalt):    a = c = aII/√2,  b = aII 
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Pm monoclinic mechanisms for the zincblende (a) to anti-litharge (d), and anti-litharge (d) to 

rocksalt (f) phase transformations of AgI. The pseudo-orthorhombic Bmm2 intermediate state (c) is  

present  in both pathways.  
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Theoretical enthalpy differences H - H(F43m) plotted vs. pressure for the AgI phases P4/nmm (anti-

litharge, circles), Fm3m (rocksalt, squares), and Bmm2 (metastable phase, diamonds). Vertical lines 

bound the predicted pressure stability fields 
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Theoretical enthalpy difference H(z(Ag2)) - H(zincblende) for the monoclinic Pm intermediate state 

of AgI along the  zincblende to anti-litharge (open circles), and anti-litharge to rocksalt (full 

triangles) phase transitions. Zincblende/anti-litharge (left) and anti-litharge/rocksalt (right) 

equilibrium pressures. 
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Theoretical molecular volume for the monoclinic Pm intermediate state of AgI along the  zincblende 

to anti-litharge (open circles), and anti-litharge to rocksalt (full triangles) phase transitions at p = 

1.15 GPa. 
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Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of AgI 

along the F43m (zinc-blende) to P4/nmm (anti-litharge) phase transformation, optimized for fixed 

z(Ag2) order parameter at the equilibrium pressure 1.15 GPa. Coordinates constrained by symmetry: 

x(Ag1)=y(Ag1)=z(Ag1)=y(I2)=0; y(Ag2)=y(I1)=1/2. The enthalpy values per formula unit, referred 

to that of the F43m phase, are also given. 

________________________________________________________________________________ 
z(Ag2)    a/Å         b/Å       c/Å        β/deg     x(Ag2)     x(I1)        z(I1)      x(I2)        z(I2)      ∆H/eV 
________________________________________________________________________________ 
 
0.5 4.709 4.709 6.660   90 0.5 0 0.25 0.5 0.75 0 
0.55 4.858 4.852 6.228   87.39 0.4171 0.9585 0.2706 0.5114 0.7673 0.0383 
0.60 5.005 4.931 5.754   85.88 0.3049 0.9206 0.2631 0.5147 0.7523 0.0843 
0.65 5.058 5.055 5.350   87.51 0.2325 0.9013 0.2367 0.4989 0.7163 0.0864 
0.70 5.004 5.065 5.283   89.95 0.1892 0.8947 0.2355 0.4853 0.6991 0.0624 
0.75 4.745 5.452 4.796 100.12 0.1934 0.8049 0.1634 0.3901 0.5891 0.0380 
0.80 4.801 5.390 4.787 100.39 0.2207 0.8194 0.1931 0.4013 0.6074 0.0347 
0.85 4.864 5.313 4.808   99.99 0.2536 0.8385 0.2213 0.4149 0.6286 0.0385 
0.90 4.750 5.035 5.418   96.12 0.3120 0.8680 0.2399 0.4436 0.6603 0.0416 
0.95 4.389 4.662 6.467   91.14 0.4614 0.9730 0.2643 0.4884 0.6856 0.0161 
1.00 4.474 4.474 6.610   90 0.5 0 0.2885 0.5 0.7115 0 
________________________________________________________________________________ 
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Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of AgI 

along the P4/nmm (anti-litharge) to Fm3m (rock-salt) phase transformation, optimized for fixed 

z(Ag2) order parameter at the equilibrium pressure 1.64 GPa. The enthalpy values per formula unit, 

referred to that of the P4/nmm phase, are also given. 

 
________________________________________________________________________________ 
z(Ag2)    a/Å        b/Å         c/Å        β/deg     x(Ag2)      x(I1)       z(I1)      x(I2)      z(I2)       ∆H/eV 
________________________________________________________________________________ 
 
1.00 4.450 4.450 6.500   90 0.5 1 0.2938 0.5 0.7062 0 
0.95 4.349 4.628 6.411   91.08 0.4631 0.9727 0.2684 0.4887 0.6816 0.0152 
0.90 4.821 5.102 5.085   97.11 0.3087 0.8688 0.2467 0.4427 0.6534 0.0354 
0.85 4.844 5.314 4.751 100.18 0.2536 0.8377 0.2233 0.4157 0.6266 0.0254 
0.80 4.773 5.377 4.754 100.43 0.2209 0.8183 0.1945 0.4026 0.6058 0.0205 
0.75 4.707 5.439 4.770 100.06 0.1945 0.8028 0.1641 0.3921 0.5876 0.0241 
0.70 4.558 5.817 4.559   97.25 0.2994 0.8684 0.1315 0.4316 0.5684 0.0342 
0.65 4.430 6.081 4.354   90.60 0.4776 0.9834 0.1121 0.4932 0.5380 0.0224 
0.60 4.389 6.127 4.356   90.26 0.4856 0.9092 0.0749 0.4958 0.5262 0.0090 
0.55 4.364 6.156 4.356   90.09 0.4890 0.9905 0.0407 0.4965 0.5145 0.0013 
0.50 4.356 6.161 4.356   90 0.5 1 0 0.5 0.5 0 
________________________________________________________________________________ 
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