Phase transitions with no group-subgroup relations between the phases

Michele Catti

> Dipartimento di Scienza dei Materiali, Universita' di Milano
> Bicocca, Milano, Italy

International School on the Use and Applications of the Bilbao
Crystallographic Server
Lekeitio, Spain, 21-27 June 2009

Buerger's classification of structural phase transitions

reconstructive: primary (first-coordination) chemical bonds are broken and reconstructed \rightarrow discontinuous enthalpy and volume changes \rightarrow first-order thermodynamic character (coexistence of phases at equilibrium, hysteresis and metastability)
displacive: secondary (second-coordination) chemical bonds are broken and reconstructed, primary bonds are not \rightarrow small or vanishing enthalpy and volume changes \rightarrow second-order or weak first-order thermodynamic character
order/disorder: the structural difference is related to different chemical occupation of the same crystallographic sites, leading to different sets of symmetry operators in the two phases \rightarrow vanishing enthalpy and volume changes \rightarrow second-order thermodynamic character

Symmetry aspects of Buerger's phase transitions

- Displacive and second-order phase transitions:
- the space group symmetries of the two phases show a group/subgroup relationship
- the low-symmetry phase approaches the transition to higher symmetry continuously;
- the order parameter η measures the 'distance' of the low-symmetry to the high-symmetry $(\eta=0)$ structure

T-driven transition: usually the symmetry of the l.t. phase is a subgroup of that of the h.t. phase p-driven transition: it is hard to predict which one of the two phases (l.p. and h.p.) is more symmetric

- Reconstructive phase transitions:
- the space group symmetries of the two phases are unrelated
- the transition is quite abrupt (no order parameter)
but:
- any kinetic mechanism of the transformation must be based on an intermediate structure whose space group is subgroup of both space groups of the two end phases
- the intermediate state transforms continuously from one to the other end phase, according to the change of the 'reaction coordinate', or kinetic order parameter

Examples of simple reconstructive phase transitions:

HCP to BCC, FCC to HCP and BCC to FCC in metals and alloys
rocksalt ($\mathrm{Fm} \overline{3} \mathrm{~m}$) to CsCl-type ($\mathrm{Pm} \overline{3} \mathrm{~m}$) structure in binary AB systems: C.N. changes from 6 to 8 zincblende $(\mathrm{F} \overline{4} 3 \mathrm{~m})$ to rocksalt $(\mathrm{Fm} \overline{3} \mathrm{~m})$ structure in binary AB systems: C.N. changes from 4 to 6
M. Catti - Lekeitio 2009
G_{1} (S.G. of phase 1) $\rightarrow \mathrm{H}$ (S.G. of intermediate state) $\rightarrow \mathrm{G}_{2}$ (S.G. pf phase 2)

$$
\begin{equation*}
\mathrm{H} \subset \mathrm{G}_{1}, \quad \mathrm{H} \subset \mathrm{G}_{2}, \quad \mathrm{G}_{1} \not \subset \mathrm{G}_{2} \tag{1}
\end{equation*}
$$

Let T_{1}, T_{2} and T be the translation groups of G_{1}, G_{2} and H, respectively, and $T_{1} \subseteq T_{2}$. Then:

$$
\begin{equation*}
\mathrm{T} \subseteq \mathrm{~T}_{1}, \mathrm{~T} \subseteq \mathrm{~T}_{2} \tag{2}
\end{equation*}
$$

In the simplest case $T_{1}=T_{2}$, so that G_{1} and G_{2} have the same translation group (i.e., the primitive unit-cells of phases 1 and 2 have the same volume, except for a minor difference due to the $\Delta \mathrm{V}$ jump of first-order transitions).

The translation group of H may coincide with that of G_{1} and $G_{2}\left(T=T_{1}\right)$, but it may also be a subgroup of it $\left(T \subset T_{1}\right.$, i.e., the volume of the primitive cell of the intermediate state is an integer multiple of that of the end phases, called the index i_{k} of the superlattice).

The index of the superlattice T of T_{1} is equal to the klassen-gleich index of the subgroup H of G_{1}. In the general case, we have then that:
$\mathrm{i}_{\mathrm{k}, 1}=\left|\mathrm{T}_{1}\right| \wedge \mathrm{T}\left|=\mathrm{V} / \mathrm{V}_{1}, \quad \mathrm{i}_{\mathrm{k}, 2}=\left|\mathrm{T}_{2}\right| / \mathrm{T}\right|=\mathrm{V} / \mathrm{V}_{2} ;$ hence: $\mathrm{i}_{\mathrm{k}, 1} / \mathrm{i}_{\mathrm{k}, 2}=\mathrm{V}_{2} / \mathrm{V}_{1}$.
V, V_{1} and V_{2} are the volumes of the primitive unit-cells associated to subgroup H and groups G_{1} and G_{2}, respectively.

As the volume per formula-unit should be the same in all cases, it turns out that:
$\mathrm{V} / \mathrm{Z}(\mathrm{H})=\mathrm{V}_{1} / \mathrm{Z}\left(\mathrm{G}_{1}\right)=\mathrm{V}_{2} / \mathrm{Z}\left(\mathrm{G}_{2}\right) ; \quad$ it follows that: $\mathrm{i}_{\mathrm{k}, 1}=\mathrm{Z}(\mathrm{H}) / \mathrm{Z}\left(\mathrm{G}_{1}\right), \quad \mathrm{i}_{\mathrm{k}, 2}=\mathrm{Z}(\mathrm{H}) / \mathrm{Z}\left(\mathrm{G}_{2}\right)$,

$$
\begin{equation*}
\mathrm{i}_{\mathrm{k}, 1} / \mathrm{i}_{\mathrm{k}, 2}=\mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{Z}\left(\mathrm{G}_{2}\right) / \mathrm{Z}\left(\mathrm{G}_{1}\right) . \tag{3}
\end{equation*}
$$

In other words, the ratio of the two k -indexes of the subgroup H is inversely proportional to the ratio of the corresponding numbers of f.u. in the primitive unit-cell volumes of G_{1} and G_{2}.

If a conventional centred (non-primitive) unit-cell is used, then the relations $V^{c}=f^{c} V, Z^{c}=f^{c} Z$ should be used, where f^{c} is the number of lattice points contained in the conventional cell.

The relation (3) gives the first general constraint on the determination of the common subgroups H .

The second important constraint concerns the atomic displacements during the reconstructive phase transition:

Atoms must remain in the same types of Wyckoff positions of H along the entire path $G_{1} \rightarrow G_{2}$.

If that were not true, then the H symmetry would be broken to allow atoms to change their Wyckoff positions.

As a consequence, the Wyckoff positions of corresponding atoms in G_{1} and G_{2} must transform into the same Wyckoff position of the common subgroup H .
M. Catti - Lekeitio 2009

Systematic search for the common subgroups H of the symmetry groups G_{1} and G_{2} :

1) Method of Stokes and Hatch (Phys. Rev. B 65144114 (2002))

The first step of a systematic search of the possible intermediate states involves the search for all common superlattices of phases 1 and 2 .

$$
\left\{\mathbf{a}_{1}\right\} \xrightarrow{\mathrm{Q}_{1}}\{\mathbf{a}\}, \quad\left\{\mathbf{a}_{2}\right\} \xrightarrow{\mathrm{Q}_{2}}\{\mathbf{a}\}, \quad\left\{\mathbf{a}_{1}\right\} \xrightarrow{\mathrm{Q}_{1} \mathrm{Q}_{2}^{-1}}\left\{\mathbf{a}_{2}\right\}
$$

\underline{Q}_{1} and Q_{2} are the transformation matrices from the primitive unit-cells of phases 1 and 2 to the primitive cell of the intermediate structure. Their components must be integer numbers.
$\operatorname{det}\left(Q_{1}\right)$ and $\operatorname{det}\left(Q_{2}\right)$ are the indexes $i_{k, 1}$ and $i_{k, 2}$ of the intermediate superlattice with respect to the lattices of phase 1 and 2, respectively. $\mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}$ is the transformation matrix relating the lattices of the two end phases, for the transition mechanism considered - Important for a comparison with the experimental relative crystallographic orientation of the end phases (if available) !
M. Catti - Lekeitio 2009

Search for common superlattices:
all possible combinations of two sets of nine integers, corresponding to the components of the Q_{1} and Q_{2} matrices, are considered.

Two limiting conditions:

- a reasonable limit on the maximum length of the primitive lattice basis vectors of T
- a reasonable limit on the total strain involved in the $T_{1} \rightarrow T_{2}$ transformation, which can be calculated from the $\mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}$ matrix.

Once the superlattice T is defined, its symmetry point group P has to be found;
Let P_{1} and P_{2} be the point groups of T_{1} and T_{2}, respectively: then $\mathrm{P}=\mathrm{P}_{1} \cap \mathrm{P}_{2}$.
P is found simply by selecting the point group operators of G_{1} and G_{2} which, in the reference frame of T, are represented by matrices with integer components.

The point group P^{\prime} of H must be a subgroup of $\mathrm{P}: \quad \mathrm{P}^{\prime} \subseteq \mathrm{P}$.
P^{\prime} and H are found by selecting, within the symmetry operators of G_{1} and G_{2}, only those which are compatible with P and T .
M. Catti - Lekeitio 2009
2) Program TRANPATH of the Bilbao Crystallographic Package

- A separate search is performed for the subgroups of G_{1} and G_{2}, and the common subgroup types shared by both symmetry groups are determined (COMMONSUBS module), within the constraint of a maximum value of the i_{k} index: $i_{k, 1} \leq i_{k}, i_{k, 2} \leq i_{k}$.

For a given common subgroup type H, the lists of all subgroups $H_{1}{ }^{p}(p=1, \ldots m) \subset G_{1}$ of the first branch, and of all subgroups $\mathrm{H}_{2}{ }^{\mathrm{q}}(\mathrm{q}=1, \ldots \mathrm{n}) \subset \mathrm{G}_{2}$ of the second branch are obtained. The indexes p and q label different classes of conjugated subgroups; conjugated subgroups of the same class are completely equivalent and then they are represented by a single member of the class.

- Every $\mathrm{H}_{1}{ }^{\mathrm{p}}$ or $\mathrm{H}_{2}{ }^{\mathrm{q}}$ subgroup is associated to a transformation matrix Q relating the basis vectors of G_{1} to those of the subgroup, according to $(\mathrm{a}, \mathrm{b}, \mathrm{c})_{\mathrm{H}}=(\mathrm{a}, \mathrm{b}, \mathrm{c})_{\mathrm{G}} \mathrm{Q}$. This matrix is by no means unique, of course, because different basis can be chosen to represent the same lattice.
- Each pair $\left(\mathrm{H}_{1}{ }^{\mathrm{p}}, \mathrm{H}_{2}{ }^{\mathrm{q}}\right)$ defines an independent possible transformation path relating G_{1} and G_{2} with common subgroup type H . Every path is checked for compatibility of the Wyckoff position splittings in the two $\mathrm{G}_{1} \rightarrow \mathrm{H}_{1}{ }^{\mathrm{p}}$ and $\mathrm{G}_{2} \rightarrow \mathrm{H}_{2}{ }^{\mathrm{q}}$ branches (WYCKSPLIT module). The WP's occupied by a given atom in G_{1} and G_{2} must give rise to the same WP for that atom in H.
- The lattice strain in the H reference frame is computed for the $G_{1} \rightarrow G_{2}$ transformation, and its value is compared to a threshold given in input to TRANPATH.
- The coordinates of all independent atoms are computed in the H reference frame for the two G_{1} and G_{2} end structures. The corresponding atomic shifts are compared to a threshold value given in input to TRANPATH.
M. Catti - Lekeitio 2009

B3/B1 reconstructive phase transition (cf. Catti, PRL 2001 and PRB 2002)
zincblende $\left(\mathrm{G}_{1}=\mathrm{F} \underline{\overline{4}} \underline{3 \mathrm{~m}) \text { to rocksalt }\left(\mathrm{G}_{2} \underline{=} \underline{\mathrm{Fm}} \overline{3} \underline{\mathrm{~m}}\right) \text { structure in } \mathrm{ZnS} \text { and SiC under pressure }}\right.$

Two examples of maximal common subgroups, giving rise to well-studied transition mechanisms:
$\mathrm{H}=\underline{\mathrm{R} 3 \mathrm{~m}, ~ \operatorname{Imm} 2}$
$\underline{\mathrm{F}} \underline{\overline{4}} \underline{3 \mathrm{~m}} \quad(\mathrm{~B} 3) \quad \mathrm{Z}=4 \quad \mathrm{M} \quad 1 / 4,1 / 4,1 / 4 \quad(4 \mathrm{c}, \underline{4} \underline{3} \underline{\mathrm{~m}}) ; \quad \mathrm{X} \quad 0,0,0 \quad(4 \mathrm{a}, \underline{4} \underline{3} \underline{\mathrm{~m}}) \quad \mathrm{a}_{\mathrm{I}}$
Fm $\overline{3} m \quad(B 1) \quad Z=4 \quad M \quad 1 / 2,1 / 2,1 / 2 \quad(4 b, m \overline{3} m) ; \quad X \quad 0,0,0 \quad(4 a, m \overline{3} m) \quad a_{\text {II }}$

Intermediate states:
$\mathbf{I}-\mathbf{H}=\mathbf{R} 3 \mathbf{m} \quad \mathrm{Z}=1 \quad \mathrm{M} \quad \mathrm{x}, \mathrm{x}, \mathrm{x} \quad(3 \mathrm{a}, 3 \mathrm{~m}) ; \quad \mathrm{X} \quad 0,0,0 \quad(3 \mathrm{a}, 3 \mathrm{~m})$
order parameter: $\quad x(M)(1 / 4 \rightarrow 1 / 2)$

$\underline{\mathrm{F}} \underline{\overline{4}} \underline{\mathrm{~m}} \rightarrow \mathrm{R} 3 \mathrm{~m}$	$\mathrm{Q}_{1}=\left[\begin{array}{lll}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$	$\mathrm{Q}_{1}{ }^{-1}=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1\end{array}\right]$
$\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \mathrm{R} 3 \mathrm{~m}$	$\mathrm{Q}_{2}=\mathrm{Q}_{1}=\left[\begin{array}{lll}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$	
$\underline{\mathrm{F}} \underline{\overline{4}} \underline{\mathrm{~B}} \rightarrow \mathrm{Fm} \overline{3} \mathrm{~m}$	$\mathrm{Q}_{1} \mathrm{Q}_{2}^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	

R3m (B3): $\quad a_{R}=a_{1} / \sqrt{ } 2, \quad \alpha_{R}=60^{\circ}$;
R3m (B1): $\quad a_{R}=a_{I I} / \sqrt{2}, \quad \alpha_{R}=60^{\circ}$
$\mathbf{I I}-\mathbf{H}=\mathbf{I m m 2} \quad \mathrm{Z}=2 \quad \mathrm{M} \quad 0,1 / 2, \mathrm{Z}(1 / 4 \rightarrow 1 / 2)(2 \mathrm{~b}, \mathrm{~mm} 2) ; \quad \mathrm{X} \quad 0,0,0(2 \mathrm{a}, \mathrm{mm} 2)$
Order parameter: $\quad z(M)$

$$
\underline{\mathrm{F}} \underline{4} \underline{3} \underline{\mathrm{~m}} \rightarrow \mathrm{Imm} 2 \quad \mathrm{Q}_{1}=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{Q}_{1}{ }^{-1}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\begin{array}{ll}\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \text { Imm2 } & \mathrm{Q}_{2}=\left[\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 0 & -1 / 2 & 1 / 2 \\ 1 & 0 & 0\end{array}\right] \\ \underline{\mathrm{F}} \underline{\overline{4}} \underline{3} \underline{\mathrm{~m}} \rightarrow \mathrm{Fm} \overline{3} \mathrm{~m} & \mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}=\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 & 1 / 2 \\ 1 & 1 & 0\end{array}\right]\end{array}$
$\operatorname{Imm} 2(B 3): \quad a=b=a_{1} / \sqrt{ } 2, \quad c=a_{1} ;$
$\operatorname{Imm} 2(\mathrm{~B} 1): \quad \mathrm{b}=\mathrm{c}=\mathrm{a}_{\mathrm{II}} / \sqrt{ } 2, \quad \mathrm{a}=\mathrm{a}_{\mathrm{II}}$

Imm2 and R3m mechanisms of the B3/B1 high-pressure phase transition

Imm2 pathway of the $\mathrm{B} 3 / \mathrm{B} 1$ phase transition of ZnS and SiC

M. Catti - Lekeitio 2009

Enthalpy of the intermediate state of SiC along the $\mathrm{B} 3-\mathrm{B} 1$ transformation path vs. order parameter ξ at several p values for two different pathways: Imm2 (closed symbols) and R3m (dashed lines)

Example: rocksalt $\left(\mathrm{G}_{1}=\mathrm{Fm} \overline{3} \mathrm{~m}\right)$ to CsCl-type $\left(\mathrm{G}_{2}=\mathrm{Pm} \overline{3} \mathrm{~m}\right)$ structure in NaCl under pressure

| Fm $\overline{3} m(B 1)$ | $Z=4$ | M | $0,0,0(4 a, m \overline{3} m) ;$ | $X \quad 1 / 2,1 / 2,1 / 2(4 b, m \overline{3} m)$ | a_{I} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Pm} \overline{3} m(B 2)$ | $Z=1$ | M | $0,0,0(1 a, m \overline{3} m) ;$ | $X 1 / 2,1 / 2,1 / 2(1 b, m \overline{3} m)$ | $a_{\text {II }}$ |

Intermediate states:
$\mathbf{I}-\mathrm{H}=\mathbf{P m m n} \quad \mathrm{Z}=2 \quad \mathrm{M} \quad 1 / 4,1 / 4, \mathrm{z}(1 / 4 \rightarrow 1 / 2)(2 \mathrm{a}, \mathrm{mm} 2) ; \quad \mathrm{X} \quad 1 / 4,3 / 4, \mathrm{z}^{+1 / 2}(3 / 4 \rightarrow 0) \quad(2 \mathrm{~b}, \mathrm{~mm} 2)$
$\begin{array}{lrl}\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \text { Pmmn } & \mathrm{Q}_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 / 2 & 1 / 2 \\ 0 & -1 / 2 & 1 / 2\end{array}\right] & \mathrm{Q}_{1}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right] \\ \operatorname{Pm} \overline{3} \mathrm{~m} \rightarrow \text { Pmmn } & \mathrm{Q}_{2}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0\end{array}\right] & \mathrm{Q}_{2}^{-1}=\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 0 & -1 / 2 \\ 0 & 1 & 0\end{array}\right] \\ \mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \operatorname{Pm} \overline{3} \mathrm{~m} & \mathrm{Q}_{1} \mathrm{Q}_{2}^{-1}=\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 1 / 4 & 1 / 2-1 / 4 \\ -1 / 4 & 1 / 2 & 1 / 4\end{array}\right] & \left(\mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}\right)^{-1}=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\end{array}$
M. Catti - Lekeitio 2009
$\operatorname{Pmmn}(B 1): \quad a=a_{\mathrm{I}}, \quad b=c=a_{1} / \sqrt{ } 2 ;$
$\operatorname{Pmmn}(B 2): \quad a=b=a_{\text {II }} \sqrt{ } 2, \quad c=a_{\text {II }}$
$\mathbf{I I} \mathbf{1} \mathbf{- H}=\mathbf{R} \overline{3} \mathbf{m} \quad \mathrm{Z}=1 \quad \mathrm{M} \quad 0,0,0(3 \mathrm{a}, \overline{3} \mathrm{~m}) ; \quad \mathrm{X} \quad 1 / 2,1 / 2,1 / 2(3 \mathrm{~b}, \overline{3} \mathrm{~m})$
$F m \overline{3} m \rightarrow R \overline{3} m$

$$
Q_{1}=\left[\begin{array}{lll}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

$$
\mathrm{Q}_{1}{ }^{-1}=\left[\begin{array}{rrr}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

$\operatorname{Pm} \overline{3} \mathrm{~m} \rightarrow \mathrm{R} \overline{3} \mathrm{~m} \quad \mathrm{Q}_{2}=\mathrm{Q}_{2}{ }^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \operatorname{Pm} \overline{3} \mathrm{~m} \quad \mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}=\mathrm{Q}_{1}=\left[\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$
$\left(\mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}\right)^{-1}=\mathrm{Q}_{1}{ }^{-1}=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$
$R \overline{3} m(B 1): \quad a_{R}=a_{I} / \sqrt{ } 2, \quad \alpha_{R}=60^{\circ} ;$
$R \overline{3} m(B 2): \quad a_{R}=a_{I I}, \quad \alpha_{R}=90^{\circ}$
M. Catti - Lekeitio 2009

II2 $-\mathrm{H}=\mathbf{P} 2_{1} / \mathrm{m} \quad \mathrm{Z}=2 \quad \mathrm{M} \quad \mathrm{x}_{1}(1 / 4), 1 / 4, \mathrm{Z}_{1}(0) \quad(2 \mathrm{e}, \mathrm{m}) ; \quad \mathrm{X} \quad \mathrm{x}_{2}(3 / 4), 1 / 4, \mathrm{z}_{2}(1 / 2) \quad(2 \mathrm{e}, \mathrm{m})$
$\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \mathrm{P} 2_{1} / \mathrm{m}$

$$
\mathrm{Q}_{1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 \\
1 & 0 & 0
\end{array}\right] \quad \mathrm{Q}_{1}{ }^{-1}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & -1 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

$\mathrm{Pm} \overline{3} \mathrm{~m} \rightarrow \mathrm{P} 2_{1} / \mathrm{m}, \quad \mathrm{R} \overline{3} \mathrm{~m} \rightarrow \mathrm{P} 2_{1} / \mathrm{m} \quad \mathrm{Q}_{2}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{Q}_{2}{ }^{-1}=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \operatorname{Pm} \overline{3} \mathrm{~m}$

$$
\mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right] \quad\left(\mathrm{Q}_{1} \mathrm{Q}_{2}{ }^{-1}\right)^{-1}=\left[\begin{array}{rrr}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

$\mathrm{P} 2_{1} / \mathrm{m}(\mathrm{B} 1): \quad \mathrm{a}=\mathrm{a}_{\mathrm{I}} \sqrt{ }(3 / 2), \quad \mathrm{b}=\mathrm{c}=\mathrm{a}_{\mathrm{I}} / \sqrt{ } 2, \quad \beta=\operatorname{arcos}(1 / \sqrt{ } 3)=54.74^{\circ} ;$
$\mathrm{P} 2_{1} / \mathrm{m}(\mathrm{B} 2): \quad \mathrm{a}=\mathrm{b}=\mathrm{a}_{\mathrm{II}} \sqrt{ } 2, \quad \mathrm{c}=\mathrm{a}_{\mathrm{II}}, \quad \beta=90^{\circ} ;$
$\mathrm{P} 2_{1} / \mathrm{m}(\mathrm{R} \overline{3} \mathrm{~m}): \quad \mathrm{a}=\mathrm{a}_{\mathrm{R}}\left[2\left(1+\cos \alpha_{R}\right)\right]^{1 / 2}, \quad \mathrm{~b}=\mathrm{a}_{\mathrm{R}}\left[2\left(1-\cos \alpha_{R}\right)\right]^{1 / 2}, \quad \mathrm{c}=\mathrm{a}_{\mathrm{R}}, \quad \beta=\operatorname{arcos}\left[\cos \alpha_{R} / \cos \left(\alpha_{R} / 2\right)\right]$

| II3-R3m | $\mathrm{Z}=4$ | $\mathrm{M}_{1} 0,0,0(3 \mathrm{~m}) ;$ | M_{2} | $\mathrm{x}_{1}(1 / 2), \mathrm{x}_{1}(1 / 2), \mathrm{z}_{1}(0)(3 \mathrm{~m})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | $\mathrm{X}_{1} \mathrm{x}_{2}(1 / 2), \mathrm{x}_{2}(1 / 2), \mathrm{x}_{2}(1 / 2)(3 \mathrm{~m}) ;$ | X_{2} | $\mathrm{x}_{3}(0), \mathrm{x}_{3}(0), \mathrm{z}_{2}(1 / 2) \quad(3 \mathrm{~m})$ |

$\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \mathrm{R} 3 \mathrm{~m}$

$$
\mathrm{Q}_{1}=\mathrm{Q}_{1}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\operatorname{Pm} \overline{3} \mathrm{~m} \rightarrow \mathrm{R} 3 \mathrm{~m}, \mathrm{R} \overline{3} \mathrm{~m} \rightarrow \mathrm{R} 3 \mathrm{~m}$
$\mathrm{Fm} \overline{3} \mathrm{~m} \rightarrow \operatorname{Pm} \overline{3} \mathrm{~m}$

$$
\mathrm{Q}_{2}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

$$
\mathrm{Q}_{2}^{-1}=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

$$
\mathrm{Q}_{1} \mathrm{Q}_{2}^{-1}=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right] \quad\left(\mathrm{Q}_{1} \mathrm{Q}_{2}^{-1}\right)^{-1}=\left[\begin{array}{rrr}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

R3m (B1): $\quad a_{R}{ }^{\prime}=a_{I}, \quad \alpha_{R}=90^{\circ}$;
R3m (B2): $\quad a_{R}{ }^{\prime}=a_{I I} \sqrt{ } 3, \quad \alpha_{R}=\operatorname{arcos}(-1 / 3)=109.47^{\circ}$;
$R 3 m(R \overline{3} m): \quad a_{R}{ }^{\prime}=a_{R}\left(3-2 \cos \alpha_{R}\right)^{1 / 2}, \alpha_{R}=\operatorname{arcos}\left[\left(2 \cos \alpha_{R}-1\right) /\left(3-2 \cos \alpha_{R}\right)\right]$
M. Catti - Lekeitio 2009

$R \overline{3} \mathrm{~m}$ pathway of the $\mathrm{B} 1 / \mathrm{B} 2$ phase transition

B1 (Fm $\overline{3} \mathrm{~m})$

$R \overline{3} \mathrm{~m}$

B2(Pm3̄m)

Pmmn pathway of the $\mathrm{B} 1 / \mathrm{B} 2$ phase transition

$\mathrm{P} 2_{1} / \mathrm{m}$ pathway of the $\mathrm{B} 1 / \mathrm{B} 2$ phase transition

B2

M. Catti - Lekeitio 2009

Enthalpy of the intermediate state of NaCl along the $\mathrm{B} 1-\mathrm{B} 2$ transformation path vs. order parameter ξ for three different pathways: rhombohedral $\mathrm{R} \overline{3} \mathrm{~m}$, monoclinic $\mathrm{P} 2_{1} / \mathrm{m}$ orthorhombic Pmmn

Intermediate metastable Cmcm phase along the $\mathrm{P} 2_{1} / \mathrm{m}$ pathway:
TlI-like structure with both Na and Cl in seven-fold coordination

$\mathrm{Na}-\mathrm{Cl} 8$ (full diamonds) and $\mathrm{Na}-\mathrm{Cl} 7$ (full triangles) interatomic distances versus the order parameter ξ along the $\mathrm{P}_{1} / \mathrm{m}$ pathway; open diamonds indicate the corresponding $\mathrm{Na}-\mathrm{Cl}$ distance along the Pmmn path.

Enthalpy of the intermediate state of NaCl along the $\mathrm{B} 1-\mathrm{B} 2$ transformation path vs. order parameter ξ at three p values for two different pathways: $\mathrm{P} 2_{1} / \mathrm{m}$ (closed symbols) and Pmmn (open symbols)

Multiple reconstructive phase transition of AgI under pressure (cf. Catti, PRB 2005)
$\left.\underline{\text { zincblende }\left(G_{1}\right.}=\mathrm{F} \underline{\overline{4}} \underline{3 \mathrm{~m}}\right)$ to anti-litharge $\left(\mathrm{G}_{2} \underline{=P 4 / \mathrm{nmm}) \text { to rocksalt }\left(\mathrm{G}_{\underline{3}} \underline{=F m} \underline{\overline{3}} \underline{\mathrm{~m}}\right) \text { structure }}\right.$

$\underline{\mathrm{F}} \underline{4} 3 \mathrm{~m}$	$\mathrm{Z}=4$	Ag	(4a)	$0,0,0$	I	(4c)	$1 / 4,1 / 4,1 / 4 ;$		$\mathrm{a}_{\text {I }}$
$\mathrm{P} 4 / \mathrm{nmm}$	$\mathrm{Z}=2$	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & (2 a) \\ & (2 a) \end{aligned}$	$\begin{aligned} & 0,0,0 \\ & 1 / 4,-1 / 4, \mathrm{z} \end{aligned}$	I	$\begin{aligned} & (2 \mathrm{c}) \\ & (2 \mathrm{c}) \end{aligned}$	$\begin{aligned} & 0,1 / 2, z \\ & 1 / 4,1 / 4, z \end{aligned}$	origin 1 origin 2	$\mathrm{a}_{\text {III }}, \mathrm{c}_{\text {III }}$
$\mathrm{Fm} \overline{3} \mathrm{~m}$	$\mathrm{Z}=4$	Ag	(4a)	$0,0,0$	I	(4b)	$1 / 2,1 / 2,1 / 2$		$\mathrm{a}_{\text {II }}$

Transformation pathway within the non-maximal common subgroup Pm (derived from maximal common subgroup Pmm2):

Intermediate state:
Pm Z=2

Ag1	(1a)	$0,0,0 ;$	$\mathrm{Ag} 2(1 \mathrm{~b})$	$\mathrm{x}(\mathrm{Ag} 2), 1 / 2, \mathrm{z}(\mathrm{Ag} 2) ;$
I 1	(1b)	$\mathrm{x}(\mathrm{I} 1), 1 / 2, \mathrm{z}(\mathrm{I} 1) ;$	$\mathrm{I} 2(1 \mathrm{a})$	$\mathrm{x}(\mathrm{I} 2), 0, \mathrm{z}(\mathrm{I} 2)$

Order parameter : $\mathrm{z}(\mathrm{Ag} 2)(1 / 2 \rightarrow 0)$
M. Catti - Lekeitio 2009

$$
\begin{array}{lc}
\underline{\mathrm{F}} \underline{\overline{4}} \underline{3 \mathrm{~m}} \rightarrow \mathrm{Pm} & \mathrm{Q}_{1}=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathrm{P} 4 / \mathrm{nmm} \rightarrow \mathrm{Pm} & \mathrm{Q}_{1}{ }^{-1}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\underline{\mathrm{F}} \underline{\overline{4}} \underline{3 \mathrm{~m}} \rightarrow \mathrm{P} 4 / \mathrm{nmm} & \mathrm{Q}_{2} \\
0 & 0 \\
0 & 1
\end{array} 0
$$

Pm (zincblende): $\quad a=b=a_{1} / \sqrt{2}, \quad c=a_{r} ;$

Pm (rocksalt): $\quad \mathrm{a}=\mathrm{c}=\mathrm{a}_{\mathrm{II}} / \sqrt{ } 2, \mathrm{~b}=\mathrm{a}_{\mathrm{II}}$

(a)

-
(b)

(f)

(d)

Pm monoclinic mechanisms for the zincblende (a) to anti-litharge (d), and anti-litharge (d) to rocksalt (f) phase transformations of AgI. The pseudo-orthorhombic Bmm2 intermediate state (c) is present in both pathways.

Theoretical enthalpy differences $\mathrm{H}-\mathrm{H}(\mathrm{F} \overline{4} 3 \mathrm{~m})$ plotted vs. pressure for the AgI phases $\mathrm{P} 4 / \mathrm{nmm}$ (antilitharge, circles), Fm $\overline{3} \mathrm{~m}$ (rocksalt, squares), and Bmm2 (metastable phase, diamonds). Vertical lines bound the predicted pressure stability fields
M. Catti - Lekeitio 2009

Theoretical enthalpy difference $\mathrm{H}(\mathrm{z}(\mathrm{Ag} 2))$ - H (zincblende) for the monoclinic Pm intermediate state of AgI along the zincblende to anti-litharge (open circles), and anti-litharge to rocksalt (full triangles) phase transitions. Zincblende/anti-litharge (left) and anti-litharge/rocksalt (right) equilibrium pressures.
M. Catti - Lekeitio 2009

Theoretical molecular volume for the monoclinic Pm intermediate state of AgI along the zincblende to anti-litharge (open circles), and anti-litharge to rocksalt (full triangles) phase transitions at $\mathrm{p}=$ 1.15 GPa .

Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of AgI along the $\mathrm{F} \overline{4} 3 \mathrm{~m}$ (zinc-blende) to $\mathrm{P} 4 / \mathrm{nmm}$ (anti-litharge) phase transformation, optimized for fixed $\mathrm{z}(\mathrm{Ag} 2)$ order parameter at the equilibrium pressure 1.15 GPa . Coordinates constrained by symmetry: $x(\operatorname{Ag} 1)=y(\operatorname{Ag} 1)=z(A g 1)=y(I 2)=0 ; y(A g 2)=y(I 1)=1 / 2$. The enthalpy values per formula unit, referred to that of the $\mathrm{F} \overline{4} 3 \mathrm{~m}$ phase, are also given.

$\mathrm{z}(\mathrm{Ag} 2)$	a / \AA	b / \AA	c / \AA	β / deg	$\mathrm{x}(\mathrm{Ag} 2)$	$\mathrm{x}(\mathrm{I} 1)$	$\mathrm{z}(\mathrm{I} 1)$	$\mathrm{x}(\mathrm{I} 2)$	$\mathrm{z}(\mathrm{I} 2)$	$\Delta \mathrm{H} / \mathrm{eV}$

0.5	4.709	4.709	6.660	90	0.5	0	0.25	0.5	0.75	0
0.55	4.858	4.852	6.228	87.39	0.4171	0.9585	0.2706	0.5114	0.7673	0.0383
0.60	5.005	4.931	5.754	85.88	0.3049	0.9206	0.2631	0.5147	0.7523	0.0843
0.65	5.058	5.055	5.350	87.51	0.2325	0.9013	0.2367	0.4989	0.7163	0.0864
0.70	5.004	5.065	5.283	89.95	0.1892	0.8947	0.2355	0.4853	0.6991	0.0624
0.75	4.745	5.452	4.796	100.12	0.1934	0.8049	0.1634	0.3901	0.5891	0.0380
0.80	4.801	5.390	4.787	100.39	0.2207	0.8194	0.1931	0.4013	0.6074	0.0347
0.85	4.864	5.313	4.808	99.99	0.2536	0.8385	0.2213	0.4149	0.6286	0.0385
0.90	4.750	5.035	5.418	96.12	0.3120	0.8680	0.2399	0.4436	0.6603	0.0416
0.95	4.389	4.662	6.467	91.14	0.4614	0.9730	0.2643	0.4884	0.6856	0.0161
1.00	4.474	4.474	6.610	90	0.5	0	0.2885	0.5	0.7115	0

M. Catti - Lekeitio 2009

Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of AgI along the $\mathrm{P} 4 / \mathrm{nmm}$ (anti-litharge) to $\mathrm{Fm} \overline{3} \mathrm{~m}$ (rock-salt) phase transformation, optimized for fixed $\mathrm{z}(\mathrm{Ag} 2)$ order parameter at the equilibrium pressure 1.64 GPa . The enthalpy values per formula unit, referred to that of the $\mathrm{P} 4 / \mathrm{nmm}$ phase, are also given.

$\mathrm{z}(\mathrm{Ag} 2)$	a / \AA	b / \AA	c / \AA	β / deg	$\mathrm{x}(\mathrm{Ag} 2)$	$\mathrm{x}(\mathrm{I} 1)$	$\mathrm{z}(\mathrm{I} 1)$	$\mathrm{x}(\mathrm{I} 2)$	$\mathrm{z}(\mathrm{I} 2)$	$\Delta \mathrm{H} / \mathrm{eV}$

1.00	4.450	4.450	6.500	90	0.5	1	0.2938	0.5	0.7062	0
0.95	4.349	4.628	6.411	91.08	0.4631	0.9727	0.2684	0.4887	0.6816	0.0152
0.90	4.821	5.102	5.085	97.11	0.3087	0.8688	0.2467	0.4427	0.6534	0.0354
0.85	4.844	5.314	4.751	100.18	0.2536	0.8377	0.2233	0.4157	0.6266	0.0254
0.80	4.773	5.377	4.754	100.43	0.2209	0.8183	0.1945	0.4026	0.6058	0.0205
0.75	4.707	5.439	4.770	100.06	0.1945	0.8028	0.1641	0.3921	0.5876	0.0241
0.70	4.558	5.817	4.559	97.25	0.2994	0.8684	0.1315	0.4316	0.5684	0.0342
0.65	4.430	6.081	4.354	90.60	0.4776	0.9834	0.1121	0.4932	0.5380	0.0224
0.60	4.389	6.127	4.356	90.26	0.4856	0.9092	0.0749	0.4958	0.5262	0.0090
0.55	4.364	6.156	4.356	90.09	0.4890	0.9905	0.0407	0.4965	0.5145	0.0013
0.50	4.356	6.161	4.356	90	0.5	1	0	0.5	0.5	0

References

Capillas C, PhD Thesis, Bilbao (2006)
Catti, M Phys. Rev. Lett. 87035504 (2001)
Catti M, Phys. Rev. B 65224115 (2002)
Catti M, Phys. Rev. B 68 100101(R) (2003)
Catti M, J. Phys.: Condens. Matter 163909 (2004)
Catti M, Phys. Rev. B 7264105 (2005)
Stokes H T and Hatch D M, Phys. Rev. B 65144114 (2002)
Toledano P and Dmitriev V, 'Reconstructive Phase Transitions' Singapore: World Scientific (1996)
Toledano J C and Toledano P, 'The Landau Theory of Phase Transitions' Singapore: World Scientific (1987)
M. Catti - Lekeitio 2009

