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Preface

Nobel Prize Winner Prof. Roald Hoffmann forewarding a recently published book
by Dronskowski [1] on computational chemistry of solid-state materials wrote that
one is unlikely to understand new materials with novel properties if one is wearing
purely chemical or physical blinkers. He prefers a coupled approach – a chemical
understanding of bonding merged with a deep physical description. The quantum
chemistry of solids can be considered as a realization of such a coupled approach.

It is traditional for quantum theory of molecular systems (molecular quantum
chemistry) to describe the properties of a many–atom system on the grounds of in-
teratomic interactions applying the linear combination of atomic orbitals (LCAO)
approximation in the electronic-structure calculations. The basis of the theory of the
electronic structure of solids is the periodicity of the crystalline potential and Bloch-
type one-electron states, in the majority of cases approximated by a linear combina-
tion of plane waves (LCPW). In a quantum chemistry of solids the LCAO approach
is extended to periodic systems and modified in such a way that the periodicity of the
potential is correctly taken into account, but the language traditional for chemistry
is used when the interatomic interaction is analyzed to explain the properties of the
crystalline solids. At first, the quantum chemistry of solids was considered simply as
the energy-band theory [2] or the theory of the chemical bond in tetrahedral semi-
conductors [3]. From the beginning of the 1970s the use of powerful computer codes
has become a common practice in molecular quantum chemistry to predict many
properties of molecules in the first-principles LCAO calculations. In the condensed-
matter studies the accurate description of the system at an atomic scale was much
less advanced [4].

During the last 10 years this gap between molecular quantum chemistry and the
theory of the crystalline electronic structure has become smaller. The concepts of
standard solid-state theory are now compatible with an atomic-scale description of
crystals. There are now a number of general-purpose computer codes allowing predic-
tion from the first-principles LCAO calculations of the properties of crystals. These
codes are listed in Appendix C. Nowadays, the quantum chemistry of solids can be
considered as the original field of solid-state theory that uses the methods of molec-
ular quantum chemistry and molecular models to describe the different properties of
solid materials including surface and point-defect modeling.
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degenerated states corresponds the same one-electron energy it is enough to identify
energy levels only for one ray of the wavevector star as it is made in the figures show-
ing the electronic band structure. The degeneracy of levels at the symmetry points
of the BZ is defined by the dimensions of wavevector point-group representations
(ordinary or projective). To identify the one-electron energies at the symmetry lines
the compatibility relations are used. In Sect. 3.2.6 we discuss the band structure of
some crystals using the considered information.

When the space group is realized in a crystalline structure the atomic states in-
cluded in the LCAO basis define the symmetry of crystalline orbitals appearing in the
electronic-structure calculations. The symmetry connection of atomic and crystalline
orbitals is given by induced representations of space groups considered in the next
subsection.

3.2 Site Symmetry and Induced Representations of Space
Groups

3.2.1 Induced Representations of Point Groups.
Localized Molecular Orbitals

In the previous section we examined the use of space-group irreducible representa-
tions for the classification of the delocalized (Bloch-type) crystalline states. In this
traditional approach the crystal is considered as a whole system and the symmetry
properties of the environment of constituent atoms are ignored. This results in a loss
of information about the connection between the atomic and crystalline states. This
information is widely used in the quantum chemistry of solids as it allows the crys-
talline properties to be explained from the knowledge of the chemical nature of the
constituent atoms and their interactions. In the plane-waves methods of electronic-
structure calculations the Bloch-type delocalized states are not directly connected
with the states of the separate atoms. However, in the LCAO methods the Bloch-type
delocalized functions are represented as the linear combination of the functions of sep-
arate atoms. Therefore, the symmetry connection between the delocalized Bloch and
localized atomic states appears to be important. If we use not only the space symme-
try of a crystal as a whole but also the site symmetry of different groups of constituent
atoms we can considerably extend the possibilities of the group-theory applications.
To study this in more detail the reader is referred to our previous book [13] where
we examined the theory and the applications of the site-symmetry approach to the
electron, phonon, magnetic properties of crystals and in the theory of phase transi-
tions. In this section, we examine only those theoretical aspects of the site-symmetry
approach that concern the electron states and allow analysis of the symmetry connec-
tion between the delocalized Bloch-type and localized Wannier-type electron states in
crystals. We begin from the short description of the site (local) symmetry approach
in molecular quantum chemistry.

In the molecular systems with the point symmetry group G the site-symmetry
subgroup Hq includes those symmetry operations that keep the point q fixed: hq = q.
As an example, we consider a tetrahedral molecular ion [MnO4]− (see Fig. 3.8). The
Mn atom site-symmetry group coincides with the whole symmetry group Td. The
site-symmetry group of any of the four oxygens is C3v ⊂ Td.



3.2 Site Symmetry and Induced Representations of Space Groups 67
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Fig. 3.8. MnO−
4 ion

Let D̂(g) be a rep of a group G (g ∈ G ). A set of operators D̂(h)(h ∈ H ⊂ G) is a
rep of H subduced by rep D̂(g) of G. The subduced irrep is denoted as D̂ ↓ H. Even if
D̂(g) = D̂(α)(g), g ∈ G is an irrep of G the subduced rep is, in general, reducible and
may be decomposed into irreps d(γ) of H:

D(α) ↓ H =
∑

γ

r(α)
γ d(γ)(h) (3.42)

The multiplicities are equal to

r(α)
γ = n−1

H

∑
h

χ(α)(h)
[
X(γ)(h)

]∗
(3.43)

where χ(α)(h) and χ(γ)(h) are the characters of irreps Dα(h) and d(γ)(h) of the groups
G and H ⊂ G respectively.

Subducing the irreps of the group G with respect to its subgroup H and decom-
posing the subduced rep over the irreps of a subgroup one obtains a correlation table.
The rows of this table are labeled by irreps of a group G; the columns denote different
subgroups H of this group G. The frequencies of subduction by each irrep of G for the
irreps of these subgroups are listed in the body of the table. One also has to take into
account the possibility of different orientations of isomorphic subgroups with respect
to the group G.

As an example we consider the correlation table for the point group Td (Table
3.5).

The subduction of the subgroup irreps by the group irrep can be considered as the
reciprocal operation to the induction of the group reps by the irreps of the subgroup
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Table 3.5. Correlation table for the point group Td

Td C2v C3v

a1 a1 a1

a2 a2 a2

e a1 a2 e

t1 a2 b1 b2 a2 e

t2 a1 b1 b2 a1 e

H. Let group G be decomposed into left cosets with respect to H:

G =
t∑

j′′
gj′′H, g1 = E, t = nG/nH (3.44)

and L be a basis space of some rep of a group G. It is also a rep of its subgroup H. Let
L(1) be a subspace of L with the basis e

(γ)
i1 , (i = 1, 2, . . . , nγ) transforming according

to an irrep dγ(h) of H:

D(h)e(γ)
i1 =

∑
i′

dii′(h)e(γ)
i′i , i = 1, 2, . . . , nγ (3.45)

To express the invariance of L(1) under D̂(h)(h ∈ H) independently of a particular
choice of basis we write

D̂(h)L(1) = L(1) (3.46)

The linearly independent basis set

e
(γ)
ij = D̂(gj)e

(γ)
i1 , j = 1, . . . , t; i = 1, 2, . . . , nγ (3.47)

spans a space L(n) of the dimension n = t · nγ . This space is invariant under the
operators D̂(g), g ∈ G and is defined as the space of the group G induced by the irrep
d(γ) of its subgroup H and is written as d(γ) ↑ G. The matrices D[γ](g) of the induced
rep d(γ) ↑ G have a block structure. Nonzero blocks are matrices of the irrep d(γ) of
H. Every row and every column of D[γ](g) has only one nonzero block. In the general
case, a rep d(γ) ↑ G is reducible

d(γ) ↑ G =
∑
α

r[γ]
α D(α)(g) (3.48)

The Frobenius reciprocity theorem is proved [13]: the multiplicity of an irrep
D(α)(g) of G in a rep d[γ] ↑ G induced by an irrep d(γ) of H ⊂ G is equal to the
multiplicity of an irrep d(γ) of H in the rep D(α) ↓ H subduced by D(α) of H.

Using the Frobenius theorem one can also write the reciprocal correlation table in
which the irreps of the point group induced by irreps of its different point subgroups
are given. Representations of the point group Td induced by irreps of its point sub-
groups C2v and C3v are given in Table 3.6. The latter subgroup may be considered
as the site-symmetry group of the oxygen atom in the molecular ion (MnO4)−.
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Table 3.6. Induced irreps of the point group Td

C2v Td C3v Td

a1 a1 e t2 a1 a1 t2

a2 a2 e t1 a1 a2 t1

b1 t1 t2 e e t1 t2

b2 t1 t2

The first and third columns in Table 3.6 contain the symbols of the point subgroups
C2v and C3v and their irreps. The rest of the columns give the symbols of the induced
representations of point group Td decomposed over the irreps of this group.

The comparison of Tables 3.5 and 3.6 allows the Frobenius theorem to be checked.
The tables of induced representations of the point groups are given in [13] and are the
reciprocal correlation tables. The latter are given in [14]. In MO LCAO calculations
the canonical MO (delocalized over the whole space) are found. Their symmetry
is defined by the irreps of the symmetry group of the whole molecule induced by
the irreps of the site-symmetry groups of the constituent atoms. Use of the induced
representations of point groups allows the canonical MO to be divided into sets,
connected with the localized MO (LMO) and find the possible center of localization.
In many cases this procedure can be done in several ways. Let us examine MO and
LMO in the (MnO4)− molecular ion. The 4s-, 4p- and 3d-functions of the Mn atom
span the space of the irreps a1, t2, e + t2 of the molecular symmetry group Td. The
site symmetry group of the O atom is C3v. As follows from Table 3.6 the 2s and
2pz functions of the oxygen atom contribute to the canonical orbitals of a1 and t2
symmetry, and oxygen 2px, 2pyfunctions contribute to functions with the symmetries
e, t1, t2. The site group C3v may correspond to localized functions centered on oxygen
atoms as well as on the Mn–O bond axis. The site group C2v may be related to a two-
centered O–O bond or to a three-centered O–Mn–O bond. The latter may also have
Cs symmetry. Table 3.7 lists one-electron energies of the (MnO4)− ion valence orbitals
calculated by a) the nonempirical MO LCAO method, b) the SWXα method, c) a
semiempirical CNDO method (see Chap. 6). The weights of valence atomic orbitals
in molecular orbitals are also given in cases a) and c) (in parentheses).

The valence canonical MO given in Table 3.7 may be distributed over sets accord-
ing to their symmetry. There are three possible variants of distribution compatible
with the symmetry requirements:

1 ) C3v(a1) − 5a1, 4t2; C3v(a1) − 6a1, 6t2; C3v(e) − 1e, 1t1, 5t2

2 ) C3v(a1) − 5a1, 4t2; C2v(a1) − 6a1, 1e, 5t2; C2v(b1) − 1t1, 6t2 (3.49)
3 ) C3v(a1) − 5a1, 4t2; Cs(a′) − 6a1, 1e, 5t2, 6t2, 1t1

The first variant is the most preferable as it corresponds to two-centered bonds,
whereas the second and the third possibilities contain sets with bonds of more than
two centers. The greater the number of centers participating in a bond, the less
localized it seems to be. Table 3.7 shows that the sets C3v(a1) correspond to orbitals
localized near the oxygen atoms, the s-type is the lowest in energy and the 2pz-type
(directed along the O–Mn line) is higher. The localized functions of symmetry contain
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Table 3.7. Electronic structure of (MnO4)
−

One-electron energies [eV] Atomic contributions [%]

State SWXα CNDO HF LCAO 3d 4s 4p 2s 2p

symmetry

1 –9.28 –7.01 –7.62 - 100

(100)

6a1 –10.53 –8.95 –8.03 8 4 88

(5) (2) (93)

6t2 –10.37 –9.68 –9.06 3 7 2 88

(17) (2) (5) (76)

1e –12.24 –10.15 –11.48 29 72

(23) (77)

5t2 –12.43 –11.26 –12.82 53 2 6 39

(18) (2) (4) (72)

4t2 –24.30 –32.68 –29.44 7 4 87.5 15

(2) (17) (79) (2)

5a1 –24.65 –36.43 –30.01 7.5 91.5 -

(21) (78) (1)

a considerable admixture of Mn 3d states. So the center of localization is apparently
displaced along the bond line towards the Mn atom.

Each of the three sets (3.50) contains states of t2 symmetry and in two sets there
are states of a1 symmetry. When generating localized orbitals it is possible to take
the linear combinations of initial canonical functions of the same symmetry and to
vary the coefficients to get the orbitals with the best spatial localization. However,
in the case of (MnO4)− the orbitals 5a1 and 6a1 have considerably different energies.
Therefore, the linear combinations must be used only for orbitals of t2 symmetry
(especially 5t2 and 6t2).

The analysis of the calculated one electron-states is often made only according
to the weights of the atomic functions, and symmetry considerations are not taken
into account. As a result, the 6t2, 6a1, 1t1 states can be treated as being in the set
corresponding to the localized functions of 2p-type centered on oxygen atoms. As
follows from Table 3.7, these states do not span the space of the rep induced by some
irrep of the site group of the oxygen atom. Therefore, it is impossible to generate
any function localized on the oxygen atom. Hence, simply the analysis of the atomic
orbital contributions in molecular states with close energies does not permit one to
correctly relate the canonical orbitals to the localized ones.

As we can see, induced reps of point groups, in combination with an analysis of the
atomic contributions in molecular eigenfunctions, are a good tool to find the regions
of localization of electron density on atoms and bonds in a molecule. Of course the
energy criterion must also be taken into consideration: a set is chosen so as to unite
states with close energies.
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Table 3.7 shows that the symmetry of localized orbitals does not depend in prac-
tice on the method of calculation of electronic structure. In particular, the method
described here is equally applicable to results of SWXα calculations where the atomic
basis is not used at all. The change in energy ordering of the 6a1 and 6t2 levels from
that of the nonempirical method does not change the symmetry found for the localized
orbitals.

The localized orbitals generation from the set of canonical MO allowed by sym-
metry requires additional choice of the localization criteria. The different orbital lo-
calization methods are implemented in molecular computer codes [35]. All of them
are connected with the search for the coefficients connecting LMO with the canonical
MO to satisfy the localization criteria.

The method due to Edmiston and Ruedenberg [36] works by maximizing the sum
of the localized orbitals two-electron self-repulsion integrals. The method requires the
two-electron integrals, transformed into the MO basis. Because only the orbitals to be
localized are needed, the integral transformation is actually not very time consuming.
However, the extension of this method to crystals is practically difficult as this requires
the transformations of lattice sums of two electron integrals.

The population method due to Pipek and Mezey [37] maximizes a certain sum of
gross atomic Mulliken populations. The latter are not realistic when the LCAO basis
includes diffuse atomic orbitals as is necessary for crystalline solids.

The most appropriate for the extension to crystal appears to be the Boys method.
The Boys method [38] minimizes the sum of spreads of the localized orbitals φi(r)

min I =
N∑

i=1

[〈r2〉i − 〈r〉2i
]
,

(
〈rm〉i ≡

∫
rm|φi(r)|2dr

)
(3.50)

The summation in (3.50) is made over N occupied canonical MO found in LCAO
self-consistent calculations.

N∑
i=1

〈r2〉i is invariant with respect to any unitary transformation among functions

φi:

φ
′
i =

N∑
i′

Ui′iφi′ (3.51)

The minimum of the functional I corresponds to the maximum of the functionals:

Ĩ =
N∑

i=1

〈r2〉i, or ˜̃I =
N∑

i>j=1

[〈r〉i − 〈r〉j ]2 (3.52)

Thus, the Boys method can also be considered as maximization of the sum of distances
between the orbital centroids ˜̃I. The modifications of the Boys method are necessary
to extend it for the localized crystalline orbitals generation. These modifications are
considered in Sect. 3.3

3.2.2 Induced Representations of Space Groups in q-basis

Any subgroup rep can generate some induced rep of a group (see Sect. 3.2.1). In the
particular case of a space group G the small irreps of the little group Gk ⊂ G induce
its full irreps.
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In this and the next subsections we consider induced reps of space groups generated
by the irreps β of the site-symmetry subgroup Gq of point q in the direct lattice space
(β ↑ G). This type of induced rep of space groups was considered in [13]. In [39] a
more general concept of band reps was introduced. All elements of the space group
G can be written in the form tvR+anR, where vR is a fractional lattice translation
associated with the F point-group element R and an is a direct lattice translation
vector.

The elements of the site-symmetry group Gq ⊆ G of the point q in the direct
lattice space are those elements of G for which gqq = tvR+an

Rqq = q. The space-
group elements gq are supposed to be given in the coordinate system whose origin
is at one of the Wyckoff positions. The site-symmetry group elements for the other
Wyckoff positions are mapped by the space-group elements with the point-symmetry
operators R. Thus the site-symmetry group Gq ⊆ G is isomorphic with the point
group Fq formed by Rq. When the coordinate system origin is moved to the other
Wyckoff position q1 the site-symmetry group elements of this new origin are elements
of the point group Fq1 but the site-symmetry group elements gq of the former origin q
contain translations. As an example we consider the space group O7

h for the two origin
choices given in the International Tables for Crystallography [19]. The site-symmetry
group of Wyckoff position a(000) is mapped to the pure point-symmetry operations of
the group for the first origin choice and to the set of operations with the translational
part for the second origin choice.

Let the representatives gjn(j = 1, 2, . . . , nq = nG/nF ) in the decomposition

G =
∑
j,n

gjnGq, gjn = tvj+an
Rj (3.53)

be chosen so that the points
qj = tvj

Rjq (3.54)

occupy the positions within the smallest unit cell (primitive or Wigner–Seitz). The
operations gjn generate from the point q sublattices qj + an(j = 1, 2, . . . , nq).

Let the local functions W
(β)
i1 (r) ≡ Wi(r−q), (i = 1, 2, . . . , nβ) be centered at point

q of the direct lattice and span the space of the irrep β of the site-symmetry group
Gq ⊂ G with matrices d(β)(gq) and characters χ(β)(gq)(gq ∈ Gq). The nature of these
functions depends on the physical problem under consideration. In the electron-band
theory of crystals W

(β)
i (r − qA) are atomic functions of atom A. In phonon spec-

troscopy applications W
(β)
i (r−qA) mean the components of atomic displacements of

an atom A, in magnetically ordered crystals these functions are the magnetic moments
of atoms [13].

Functions W
(β)
i1 (r) transform as

ĝqW
(β)
i1 (r) = W

(β)
i

(
R−1

q (r − vq − an − Rqq)
)

= W
(β)
i

(
R−1

q (r − q)
)

=
nβ∑

i′=1

d
(β)
i′i (Rq)W (β)

i′1 (r) (3.55)

since the vector q remains invariant under the operations of the site group Gq. All
the functions W

(β)
i1 (r)(i = 1,2, . . . ,nβ) are associated with the site q.
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The local functions associated with the smallest unit cell are obtained from local
functions W

(β)
i1 (r) through

W
(β)
ij (r) = t̂vj

RjW
(β)
i1 (r) = W(β)

i

(
R−1

j (r − q)
)

, (3.56)

i = 1, 2, . . . , nβ ; j = 1, 2, . . . , nq

Functions in other unit cells are obtained through

W
(β)
ij (r − an) = t̂an

W
(β)
ij (r) = W

(β)
ij

(
R−1

j (r − qj − an)
)

(3.57)

The local functions W
(β)
ij (r− an) form the basis of an induced rep β ↑ G of space

group G. Indeed, let the element tvR
R transform the jth sublattice into the j′th one

and be written in the form

tvR
R = tajj′ tvj′ Rj′tvq

Rq(tvj
Rj)−1 (3.58)

where R = Rj′RqR
−1
j (Rq ∈ Fq) and ajj′ is the lattice vector. Equation (3.58) may

be checked directly. From (4.2.6) we get for the local functions

tVR
RW

(β)
ij (r − an) =

∑
i′

(
R−1

j′ RRj

)
W

(β)
i′j′ (r − Ran − aj′j) (3.59)

The dimension of the rep β ↑ G is infinite for the model of an infinite crystal.
In a cyclic model, the infinite crystal is replaced by a main region consisting of N
smallest unit cells and periodic boundary conditions are introduced. The total number
of local functions W

(β)
ij (r−an) becomes finite and equals nβnqN(i = 1, 2, . . . , nβ , j =

1, 2, . . . , nq; n takes N values). These functions form an nβnqN−dimensional space
of the rep of the space group G. This rep matrix consists of nβnq blocks arising from
d(β).

To specify the induced rep β ↑ G in the basis of local functions W
(β)
ij (r− an) one

has to indicate the symmetry center q of local functions by its Wyckoff position and
the irrep β of the site-symmetry point group Gq. Thus, in the q basis the induced
rep β ↑ G is specified by the index (q, β).

As an example, we consider oxygen atom 2s functions in the perovskite CaTiO3

structure. The oxygen atoms occupy Wyckoff position c of the space group O1
h with

the site-symmetry D4h. The 2s-functions of an oxygen atom transform over a1g irrep
of the point group D4h. Thus, the induced representation in q basis (c, a1g) is three-
dimensional at each k point (d(β) = a1g, nβ = 1, nq = 3).

3.2.3 Induced Representations of Space Groups in k-basis.
Band Representations

In Sect. 3.1 we have considered the space-group irreps D(k,α)(g) defined by stars ∗k
of wavevectors k from the first Brillouin zone and by irreps D(α) of little groups Gk.
Let us construct in the space of induced rep (q, β) new basis functions that span the
space of irreps of the translation group T (Bloch functions)

Ψ
(β)
ij (k, r) =

∑
n

exp(ikan)W (β)
ij (r − an), (i = 1, 2, . . . , nβ ; j = 1, 2, . . . , nq) (3.60)
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and vice versa

W
(β)
ij (r − an) =

Va

(2π)3

∫
exp(−ikan)Ψ (β)

ij (k, r)dk

W
(β)
ij (r − an) = N−1

∑
k

exp(−ikan)Ψ (β)
ij (k, r) (3.61)

for infinite and cyclic models of a crystal, respectively. Using (3.24), (3.28) and (3.59)
one obtains

tvR
RΨ

(β)
ij (k, r) = exp(−iRk · ajj′)

∑
i′

d
(β)
i′i

(
R−1

j′ RRj

)
Ψi′j′(Rk, r) (3.62)

Let the wavevector k be fixed and tV R
R ∈ Gk. Then p = nβnq functions Ψ

(β)
ij (k, r)

span the space of the small representation of the little group Gk with the character

χ
(β)
k (g) =

nq∑
j=1

exp(−ik · ajj′)χ̃(β)(R−1
j RRj) (3.63)

where

χ̃(β)(R−1
j RRj) =

{
0, if R−1

j RRj �= Rq

χ(β)(Rq), if R−1
j RRj = Rq

(3.64)

Knowing the characters (3.63) of the induced rep one can easily calculate the number
of times the small irrep D(k,γ) of the group Gk with characters χ(k,γ)(g), g ∈ Gk is
contained in the induced rep (q, β).

This procedure gives the labels of the induced rep (q, β) in the k basis correspond-
ing to those in the q basis, i.e. the results of the reduction of the induced rep over
irreps of the group Gk. All the information obtained can be specified by listing the
symmetry (the labels of irreps) of the Bloch states with wavevectors k correspond-
ing only to a relatively small number of k points in the Brillouin zone forming a set
K. The set K contains the inequivalent symmetry points of the Brillouin zone and
one representative point from each inequivalent symmetry element (symmetry line or
symmetry plane) if the latter does not contain the points of higher symmetry.

The symmetry properties of basis functions with other vectors k can be determined
with the use of the compatibility relations.

The set K for the space groups with high-symmetry classes consists only of the
symmetry points. For instance, the set K for the space groups O5

h, O7
h contains the

points Γ, X, L, W (Fig. 3.2); for the space group O4
h - the points Γ, X, M,R (Fig. 3.2).

The symmetry points can be absent in the Brillouin zone of space groups with low
symmetry classes.

The symmetry properties of basis functions of an induced rep are described by
the full group irreps (∗k, γ) or by the small irreps (k, γ) of the wavevector groups Gk

unambiguously related to them. Thus, as an index of an induced rep we shall use the
symbols of those small irreps of the little groups Gk with wavevectors from the set K
that correspond to basis functions of a given induced rep

k1(γ
(1)
1 , γ

(1)
2 , . . .),k2(γ

(2)
1 , γ

(2)
2 , . . .), . . . ,ki ∈ K (3.65)
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The index of the induced rep (3.65) can also be considered as the set of so-called
subduction frequencies r

(q,β)
(∗k,γ). The latter give the number of times the irrep (∗k, γ) of

G is contained in the induced rep (q, β). From the Frobenius theorem the subduction
frequencies r

(q,β)
(∗k,γ) are equal to the number of times the irrep (∗k, γ) subduces the

irrep β of G(∗k,γ)
k

r
(∗k,γ)
β = r

(q,β)
(∗k,γ) =

∑
g∈Gq

(
χ(β)∗(g)

)
χ(∗k,γ)(g) (3.66)

where χ(∗k,γ)(g) and χ(β)(g) are the characters of the irreps (∗k, γ) of G and β of Gq,
respectively.

To calculate the subduction frequencies (3.66) one may use different procedures
[13]. The first uses (3.63) and does not require knowledge of the full irrep (∗k, γ)
characters. Indeed, one obtains, according to (3.63), the characters χ

(β)
k (g) of the rep

of a little group Gk. Reducing this rep requires the characters of the irreps of the
little group Gk (tabulated in [17] and on site [16]) and gives the induced rep index
(3.66) in the k−basis. The second procedure for calculating subduction frequencies
uses (3.66) and requires the character χ(∗k,γ) of full irreps of space groups.

Comparing the two ways of finding the induced rep index in the k basis one may
conclude:

1. the first one is more appropriate for q sets consisting of only one Wyckoff
position in the unit cell (this is possible only in symmorphic space groups);

2. the second one is more appropriate for those wavevector stars that consist of
one ray so that the full and small irreps coincide.

In [39] the concept of a band rep of a space group, which may be an induced rep,
was introduced. Band reps were used to define the symmetry of an electron energy
band as a whole entity.

From the group-theoretical point of view a band rep of a space group is a direct
sum of its irreps that have the following properties:

1) the space of the band rep contains the basis vectors with all the k vector stars
in the Brillouin zone;

2) the compatibility relations are fulfilled throughout the Brillouin zone in the
model of an infinite crystal or for N points in the cyclic model.

It is obvious that at every k point there is the same number p of Bloch-type basis
states.

In a cyclic model of a crystal with N primitive cells in the main region a band rep
is an Np dimensional reducible rep of a space group. An induced rep is a particular
case of a band rep as it satisfies both properties 1 and 2 with p = nqnβ (nβ is the
dimension of the site-symmetry group irrep for a point q belonging to the set of nq

points in the unit cell).
The index of a band rep in the k basis has the form given by (3.65). By analogy

with the same index for an induced rep, all informaton about the band rep can be given
by specifying the symmetry (the labels of irreps) of the basis vectors with wavevectors
k ∈ K.

It is seen now that band reps (induced reps included) of space groups can be
specified by the index (3.65) in the k basis, and only those band reps that are induced
ones can also be specified in the q basis in the form (q, β).
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Let us return to our example of the induced representation (c, a1g) of the space
group O1

h formed by 2s functions of oxygen atoms in the perovskite structure. Using
the full group irreps from the site [16] we calculate the subduction frequencies (3.66)
for belonging to K set points of Brillouin zone and write the induced band repre-
sentation (c, a1g) in the k basis in the form Γ (1+3+)R(5+)M(4+5−)X(1+3−4−). The
labels of the small irreps of the little groups are taken from [17].

3.2.4 Simple and Composite Induced Representations

The use of the q basis of induced reps allows one to introduce the concept of simple
induced reps, that facilitates the analysis of all possible types of induced reps for a
given space group. An induced rep is called simple if it is impossible to split up the
space of this rep into subspaces that are invariant under operators ĝ (g ∈ G) and are
also the spaces of some induced reps.

By definition, a composite induced rep is a direct sum of the simple ones. As a
group rep, a simple induced rep is reducible, so we prefer to avoid the expression “ir-
reducible induced rep” used in [39]. The term introduced in [40], “elementary induced
rep”, is equivalent to the term simple induced rep used in this book.

All simple induced reps may be generated by induction from the irreps of site-
symmetry groups Gq′ , of a relatively small number of q′ points forming the set Q in
the Wigner–Seitz unit cell of the direct lattice. The set Q consists of

1) all the inequivalent symmetry points of the Wigner–Seitz unit cell;
2) one representative point from all the inequivalent symmetry lines and symmetry

planes that do not contain the symmetry points.
The site groups Gq for all q ∈ Q are called maximal isotropy subgroups in [40].

The set Q in the Wigner–Seitz unit cell is determined in the same way as the set K
in the Brillouin zone. However, the action of symmetry operations in the direct and
reciprocal spaces is different.

A reducible rep d(g) =
∑
β

rβd(β)(g) of the site group Gq induces a composite

induced rep that is the direct sum of reps induced by the irreps d(β)(g). As an example,
we can consider a composite rep induced by d functions of a transition metal atom
(Wyckoff position a) in the perovskite structure: these functions span the reducible
5-dimensional rep of the the site-symmetry group Oh subducing t2g and e2g irreps.
Therefore the induced irrep in q basis is composite: b(eg) + b(t2g).

Now let us show that if the q-point does not belong to the set Q, the rep (q, β)
induced from the irrep of the site group Gq is composite.

Let q′ be one of the points in the set Q for which the site group Gq′ contains Gq

as a subgroup (Gq ⊂ Gq′).
This condition may be satisfied for several points q′ of the set Q. The decompo-

sition of the site group Gq′ into left cosets with respect to the subgroup Gq has the
form

Gq′ =
n∑

j=1

tvj RjGq (3.67)

If the functions W
(β)
i1 (r)(i = 1, 2, . . . , nβ) span the space of an irrep β of the group

Gq then n · nβ functions
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W
(β)
ij (r) = tvj RjW

(β)
i1 (r) (3.68)

form the space of the site group Gq rep β ↑ Gq induced from the irrep β of its
subgroup Gq′ . Let us decompose the rep β ↑ Gq′ into the irreps α′ of the group Gq′

β ↑ Gq′ =
∑
α′

rα′α′ (3.69)

The irrep β of the group Gq′ and rep β ↑ Gq′ of the group Gq′ generate the same
induced rep

(q, β) = (q′, β ↑ Gq′) =
∑
α′

rα′(q′, α′) (3.70)

which is obviously composite. Thus, we have proved that all the possible simple in-
duced reps of a given space group G may be generated by induction from the irreps
of the subgroups Gq′ for q′ ∈ Q.

In [40] a complete classification of the inequivalent simple induced reps is given
and all the cases when the reps induced from the irreps of maximal isotropy subgroups
can be equivalent to one another are considered. First, equivalent induced reps at the
same site q′ ∈ Q arise.

1) by induction from one-dimensional irreps forming an orbit of the normalizer
NG(Gq′); there are 23 pairs of them belonging to 15 space groups; and

2) four types of isotropy subgroups (C2v, D2, D2h, T ) may generate reps induced
by irreps that do not form an orbit of NG(Gq′). There are 34 pairs of them belonging
to 25 space groups.

Second, there are 17 pairs of different maximal isotropy subgroups (belonging to
14 space groups) yielding 63 pairs of equivalent induced reps by induction from one-
dimensional irreps. When inducing from two-dimensional irreps of isotropy subgroups,
33 pairs of equivalent induced reps are obtained, belonging to 23 space groups. In total,
there are 153 pairs of equivalent induced reps (57 at the same site and 96 at different
sites) induced from different irreps of maximal isotropy subgroups. In [40] it was also
shown that 40 reps belonging to 25 space groups and induced from irreps of maximal
isotropy groups are composite.

There is a formal analogy between simple induced reps and reps irreducible in
the usual group-theoretical sense. However, this analogy is not complete. Indeed, the
composite induced rep decomposition into simple ones is not always unique. This
occurs whenever the site-symmetry group Gq is not the maximal isotropy one (q �∈
Q). In this case, the group Gq is a subgroup of several maximal isotropy groups
Gq′(q′ ∈ Q). Consequently, the induced rep decomposition (3.70) will be different for
different points.

The theory of induced representations of space groups gives the answer to the
question of whether it is possible to generate in the space of states of a given energy
band the basis of localized functions? The answer to this question allows the symme-
try connection between delocalized Bloch-type and localized Wannier-type crystalline
orbitals to be obtained. This point is discussed in Sect. 3.3.

The following qualitative discussion should explain some features of band reps
corresponding to real energy bands in crystals. Let a crystal be formed from isolated
constituent atoms by decreasing the interatomic distances from very large ones to
those corresponding to real crystalline structure. The crystal field may split the de-
generate one-electron atomic levels due to symmetry requirements, leading to quite
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narrow energy bands, because of the interatomic interactions. The interatomic dis-
tances are sufficiently large that the crystalline orbitals corresponding to these bands
are localized quite well at the atomic sites and are close to atomic functions. The Bloch
states of these narrow energy bands span the spaces of some band reps that certainly
have q basis, i.e. are induced representations. These reps are induced by those ir-
reps of site-symmetry groups of atoms that describe the transformation properties of
atomic states generating the energy bands. The further decrease of the interatomic
distances may considerably transform the energy bands (join them together into more
complicated ones and later split them up again into other simple ones) but a new elec-
tronic state of arbitrary symmetry cannot arise nor can any state disappear. At the
same time, the wavefunctions of all possible symmetry types may change and cor-
responding one-electron energies may shift along the energy scale. Thus, an energy
band corresponding to a band rep without a q basis (i.e. that is not an induced rep)
may arise. However, this band, in joining with one or several neighboring ones, forms
an energy band corresponding to a composite induced rep with q basis. In the joint
space of these band states one can generate the basis of localized functions. Thus, the
calculated one-electron energy band spectra of crystals may always be divided into
bands connected with some simple or composite induced reps. When the interatomic
distances are decreased to those in a real crystal the atomic functions undergo more
or less extensive modifications and become the Wannier functions of a crystal (see
Sect. 3.3). When the latter arise directly from atomic functions one can use for them
the same notation (s, p, d and so on). Let the atoms be at Wyckoff positions with the
site summetry group Gq. Localized functions transforming according to irreps of the
group Gq correspond to the bands arising from atomic levels split by a crystalline
field. If these Wyckoff positions belong to the set Q, the band states usually form
the space of a simple induced rep. When atoms are at positions that do not belong
to the set Q the band states form the basis of a composite induced rep. If, when
the interatomic distances are decreased, the energy bands cross one another then the
states of the resultant composite band also span the space of a composite induced
rep. However, it may happen that this new band splits into several subbands related
to localized functions that have centers of localization somewhat displaced from the
atomic positions for further decreases in the interatomic distances. This case is typical
for the electronic structure of crystals with covalent chemical bonding.

The information about the simple induced representations of the space groups can
be given in the form of tables, shown in the next section for the space groups O5

h, O7
h

and O1
h.

3.2.5 Simple Induced Representations for Cubic Space Groups
O1

h, O5
h and O7

h

The correspondence between symbols of simple induced reps in q- and k-basis for
q ∈ Q and k ∈ K is usually given in tables of simple induced reps having the following
structure (e.g. Tables 3.8–3.10 for the space groups O1

h, O5
h and O7

h, respectively).
The first two columns of the table contain the labels of the induced reps in the

q-basis (these labels number the rows of the table): the international symbols (Ro-
man letters a, b, c and so on) of the Wyckoff positions (sites in direct space) and the
Mulliken symbols of the irreps of the site-symmetry groups for these Wyckoff posi-
tions. For example, d(a2u) and d(eu) are the labels of induced reps in q-basis for space
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Table 3.8. Simple induced representations of the O1
h - Pm3m space group

q β Γ R M X

a b a b a b

a1g 1+ 1+ 2− 1+ 4+ 1+ 3−

a1u 1− 1− 2+ 1− 4− 1− 3+

a2g 2+ 2+ 1− 2+ 3+ 2+ 4−

a a2u 2− 2− 1+ 2− 3− 2− 4+

eg 3+ 3+ 3− 1+2+ 3+4+ 1+2+ 3−4−

b eu 3− 3− 3+ 1−2− 3−4− 1−2− 3+4+

t1g 4+ 4+ 5− 3+5+ 2+5+ 3+5+ 1−5−

t1u 4− 4− 5+ 3−5− 2−5− 3−5− 1+5+

t2g 5+ 5+ 4− 4+5+ 1+5+ 4+5+ 2−5−

t2u 5− 5− 4+ 4−5− 1−5− 4−5− 2+5+

c d c d c d

a1g 1+3+ 5+ 4− 4+5− 1+5− 1+3−4− 1+2+3−

a1u 1−3− 5− 4+ 4−5+ 1−5+ 1−3+4+ 1−2−3+

b1g 2+3+ 4+ 5− 3+5− 2+5− 2+3−4− 1+2+4−

c b1u 2−3− 4− 5+ 3−5+ 2−5+ 2−3+4+ 1−2−4+

a2g 4+ 2+3+ 1−3− 2+3−4− 1−2−3+ 3+5− 1−5+

d a2u 4− 2−3− 1+3+ 2−3+4+ 1+2+3− 3−5+ 1+5−

b2g 5+ 1+3+ 2−3− 1+3−4− 1−2−4+ 4+5− 2−5+

b2u 5− 1−3− 2+3+ 1−3+4+ 1+2+4− 4−5+ 2+5−

eg 4+5+ 4+5+ 4−5− 1−2−5+5− 3−4−5+5− 1−2−5+5− 3+4+5+5−

eu 4−5− 4−5− 4+5+ 1+2+5−5+ 3+4+5−5+ 1+2+5−5+ 3−4−5−5+

In (aaa) units: a1(100), a2(010), a3(001)

Q: Oh(m3m) – a(000), b(1/2, 1/2, 1/2);

D4h(4/mmm) – c(1/2, 1/2, 0), d(1/2, 0, 0)

In (2π/a, 2π/a, 2π/a) units: b1(100), b2(010), b3(001)

K: Oh – Γ (000), R(1/2, 1/2, 1/2); D4h – M(1/2, 1/2, 0), X(1/2, 0, 0) .

group O1
h (Table 3.8). The remaining columns give the labels of induced reps in the

k-basis, with the symbols of k-points (wavevectors) in the first row of the table and
the indices of small irreps of little groups in subsequent rows. For example, 4− in the
column Γ means small irrep Γ4− . Below the table supplementary information is given
– the primitive translations, the coordinates and site-symmetry groups of Wyckoff
positions in the direct lattice and the analogous data for the reciprocal lattice. The
correspondence between small representations of little groups for symmetry points in
BZ is given in Table 3.11 (space group O1

h) and in Table 3.12 (space group O5
h ).

In Tables 3.8–3.10 of simple induced reps the labeling of the space-group irreps is
that of [17], the labeling of the point group irreps is that of [30] and the site points q
are indexed as Wyckhoff positions from [19].
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Table 3.9. Simple induced representations of the O5
h - Fm3m space group

q β Γ L X W

a b a b

a1g 1+ 1+ 2− 1+ 1 2

a1u 1− 1− 2+ 1− 1 2

a2g 2+ 2+ 1− 2+ 2 1

a a2u 2− 2− 1+ 2− 2 1

eg 3+ 3+ 3− 1+2+ 1 2 1 2

b eu 3− 3− 3+ 1−2− 3 4 3 4

t1g 4+ 2+3+ 1−3− 3+5+ 3 5 4 5

t1u 4− 2−3− 1+3+ 3−5− 2 5 1 5

t2g 5+ 1+3+ 2−3− 4+5+ 4 5 3 5

t2u 5− 1−3− 2+3+ 4−5− 1 5 2 5

c a1 1+2− 1+2− 4+3− 5

a2 2+1− 2+1− 3+4− 5

e 3+3− 3+3− 3+4+3−4− 5 5

t1 4+5− 2+3+1−3− 2+5+1−5− 1 2 3 4 5

t2 5+4− 1+3+2−3− 1+5+2−5− 1 2 3 4 5

d ag 1+3+5+ 1+3+2−3− 1+4+3−4−5− 1 2 5 5

au 1−3−5− 1−3−2+3+ 1−4−3+4+5+ 3 4 5 5

b1g 2+3+4+ 2+3+1−3− 2+3+3−4−5− 1 2 5 5

b1u 2−3−4− 2−3−1+3+ 2−3−3+4+5+ 3 4 5 5

b2g 4+5+ 1+3+1−3− 1−2−5+5− 1 3 4 4 5

b2u 4−5− 1−3−1+3+ 1+2+5−5+ 1 1 2 4 5

b3g 4+5+ 2+3+2−3− 5+1−2−5− 2 3 3 4 5

b3u 4−5− 2−3−2+3+ 5−1+2+5+ 1 2 2 3 5

In (aaa) units: a1(0, 1/2, 1/2), a2(1/2, 0, 1/2), a3(1/2, 1/2, 0)

Q: Oh(m3m) – a(000), b(1/2, 1/2,−1/2);

Td(43m) – c(1/4, 1/4, 1/4); D4h(mmm) – d(1/2, 0, 0).

In (2π/a, 2π/a, 2π/a) units: b1(–111), b2(1–11), b3(11–1)

K: Oh – Γ (000); D4h – X(0, 1/2, 1/2)

D3d – L(1/2, 1/2, 1/2); D2d – W (1/4, 1/2, 3/4).

According to the theory developed in previous sections, all the information about
the induced reps of a given space group is contained in the table of its simple induced
reps. Using these tables one can solve the following two purely mathematical problems:

1) Finding the irreducible components of the space-group reps induced by the
irreps of all the possible site-symmetry subgroups for a given space group.

2) Finding the irreducible components of the site-symmetry group reps subduced
by the irreps of the corresponding space group.

To solve these two problems one also needs:
a) the compatibility relation tables for the irreps of space groups [17];
b) tables of induced reps of crystallographic point groups [13].
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Table 3.10. Simple induced representations of the O7
h – Fd3m space group

q β Γ X L W

a b

a1 1+2− 1 1+2− 1 2

a a2 1−2+ 2 1−2+ 2 1

e 3+3− 1 2 3+3− 1 2 1 2

b t1 4+5− 2 3 4 1−2+3+3− 1 1 2 1 2 2

t2 4−5+ 1 3 4 1+2−3+3− 1 2 2 1 1 2

c d

a1g 1+5+ 1 3 1+2−3− 1+2−3+ 1 2

c a1u 1−5− 2 3 1−2+3+ 1−2+3− 1 2

a2g 2+4+ 2 4 1−2+3− 1−2+3+ 1 2

d a2u 2−4− 1 4 1+2−3+ 1+2−3− 1 2

eg 3+4+4+ 1 2 3 4 1−2−3+3−3− 1−2+3+3+3− 1 1 2 2

eu 3−4−4− 1 2 3 4 1+2+3−3+3+ 1+2−3−3−3+ 1 1 2 2

For the direct and reciprocal lattice translation vectors and coordinates

of K-set points see Table 3.9.

Q: Td(43m) – a(000), b(1/2, 1/2,−1/2);

D3d(3m – c(1/8, 1/8, 1/8), d(−3/8,−3/8, 5/8).

Table 3.11. Space group O1
h: correspondence between small representations of little groups

GΓ , GR, GX and GM and irreducible representations of point groups Oh and D4h

Γ , R Oh X, M D4h

1+ a1g 1+ a1g

1− a1u 1− a1u

2+ a2g 2+ a2g

2− a2u 2− a2u

3+ eg 3+ b1g

3− eu 3− b1u

4+ t1g 4+ b2g

4− t1u 4− b2u

5+ t2g 5+ eg

5− t2u 5− eu

We consider now in more detail the application of the tables of simple induced
reps for the solution of the two problems mentioned above. Suppose one needs to find,
for a given space-group, the irreducible components of the space group reps induced
by some irrep of the site-symmetry subgroup Gq ⊂ G. One has to consider four cases.

la) q ∈ Q and k ∈ K. All the irreps in question can be found immediately from
the table of simple induced reps. For example, all the irreps (∗k, β) of the space group
O1

h with k ∈ K contained in the simple induced rep d(a1g) are enumerated in the row
d(a1g) of Table 3.8: Γ (1+3+)R(4−)M(1+5−)X(1+2+3−).
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Table 3.12. Space group O5
h: correspondence between small representations of little groups

GΓ, Gx, GL, Gw and irreducible representations of point groups Oh, D4h, D3d and D2d

Γ Oh X D4h L D3d W D2d

1+ a1g 1+ a1g 1+ a1g 1 a

1− a1u 1− a1u 1− a1u 2 b

2+ a2g 2+ a2g 2+ a2g 3,4 e

2− a2u 2− a2u 2− a2u

3+ eg 3+ b1g 3+ eg

3− eu 3− b1u 3− eu

4+ t1g 4+ b2g

4− t1u 4− b2u

5+ t2g 5+ eg

5− t2u 5− eu

lb) q ∈ Q and k �∈ K. After using the table of simple induced reps it is necessary to
use the tables of compatibility relations. As an example the latter are given in Table
3.13 for the R and M points of the BZ. For example, the simple induced rep d(a1g)
of the group O1

h contains the irreps R4− and, according to Table 3.13 of compatibility
relations, the irreps Λ1, Λ2 with k �∈ K since R4−↓Gd = Λ1 + Λ2.

Table 3.13. Compatibility relations for space group O1
h. For the Γ and X points the com-

patibility relations for the space group O1
h coincide with those for the space group O5

h (see
Table 3.12)

R 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

Λ (Γ L) 1 2 2 1 3 3 2, 3 1, 3 1, 3 2, 3

S (R X) 1 2 4 3 1, 4 2, 3 2, 3, 4 1, 3, 4 1, 2, 3 1, 2, 4

T (R M) 1 2 4 1, 3 2, 4 2, 5 1, 5 4, 5 3, 5

M 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

Σ (Γ M) 1 2 4 3 4 3 1 2 2, 3 1, 4

Z (X M) 1 2 4 3 1 2 3 4 2, 4 1, 3

T (R M) 1 2 2 1 3 4 4 3 5 5

1c) q �∈ Q and k ∈ K. First, the table of induced representations of point groups
is used to obtain the decomposition (3.75) and then the table of simple induced reps
may be used.

1d) q �∈ Q and k �∈ K. All three tables (simple induced reps of a space group,
induced representations of point groups and compatibility relations) are necessary. All
the four cases are considered in detail in [13] on the example of the space group D14

4h

(symmetry group of rutile structure). If we now seek the irreducible components of
the site-symmetry group reps subduced by a given space group irrep (∗k, γ) (problem
2) we also have four cases to consider.
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2a) k ∈ K and q ∈ Q. One finds the irrep (∗k, γ) in question in the rows of the
table of simple induced reps corresponding to the irreps of the site group. According
to the Frobenius reciprocity theorem the irrep β is contained in the reducible rep of
the group Gq subduced by the irrep (∗k, γ) of the space group G as many times as
the symbol (∗k, γ) is repeated in the corresponding row of the table of simple induced
reps. For example, the rep of the site group Gd=D4h subduced by the irrep M5− of
the space group O1

h consists of the irreps a1g and eu (Table 3.13).
2b) k ∈ K and q �∈ Q. First one finds the irreps α

′
contained in the decomposition

of the rep of the group Gg
′ (Gq ⊂ Gg

′ subduced by the irrep (∗k, γ) (as is done in
2a). Then, using the table of induced representations of point groups one decomposes
the reps of the group Gg subduced by the irreps α

′
of the group Gg

′ .
2c) k �∈ K and q ∈ Q. Using the compatibility-relations perovskite table one

completes the simple induced reps table by one additional column only in the rows
corresponding to the irreps of the group Gg. Then one proceeds as in case 2a.

2d) k �∈ K and q �∈ Q. The irreducible components of the subduced rep can be
found in two steps: first, the compatibility-relations table is used as in case 2c, and
then the table of induced representations of point groups as in case 2b.

Unfortunately simple induced reps for 230 space groups can not be found on any
Internet site. One can find them in the book by Kovalev [31], but the irreps notations
in this book sometimes differ from those used by Miller and Love [17] and on the
site [16]. The latter notations are introduced in tables of simple induced reps of 25
frequently used space groups given in [13]. In this section we reproduce from [13]
the simple induced tables for three cubic space groups belonging to the crystal class
Oh: O1

h (simple cubic lattice, see the Brillouin zone in Fig. 3.1) and O5
h, O7

h (face-
centered cubic lattices, the Brillouin zone in Fig. 3.2). The symmetry of the perovskite
form of SrZrO3, MgO and silicon crystals is described by the groups O1

h, O5
h and O7

h,
respectively. These crystals are examples of systems with different types of chemical
bonding: the mixed ionic-covalent bonding (in SrZrO3 the Sr atom is in the Sr2+ state,
the Zr–O bonding is essentially covalent), ionic bonding (MgO) and covalent bonding
(Si). In the next subsection we illustrate the use of the simple induced representations
in the electronic-structure theory for these relatively simple structures.

3.2.6 Symmetry of Atomic and Crystalline Orbitals
in MgO, Si and SrZrO3 Crystals

The space symmetry of crystalline orbitals generated by atomic orbitals of the LCAO
basis can be found from the tables of induced representations of space groups con-
sidered in previous section. The knowledge of space symmetry of crystalline orbitals
allows the pictures of electronic bands given as a result of electronic-structure calcu-
lations to be understood. It is also useful in localized crystalline orbitals generation
(see Sect. 3.3). As an example, we show the energy bands for MgO (Fig. 3.4), sili-
con (Si) (Fig. 3.5) and SrZrO3 crystals (Fig. 3.3). The LCAO calculations of these
crystals were made using the Hartree–Fock LCAO method (see Chap. 4). MgO crys-
tal has rocksalt structure with symmorphic space group O5

h, Si crystal has diamond
structure with nonsymmorphic space group O7

h and SrZrO3 crystal has perovskite
structure with symmorphic space group O1

h, see Sect. 2.3.2. The translation symme-
try of the first two crystals is described by the same face-centered cubic lattice, of
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the third one – by the simple cubic lattice. The point group F = Oh of all the three
crystals is holosymmetric (coincides with point group F 0 of the cubic lattice). For
the first two crystals the wavevector belongs to the same Brillouin zone (Fig. 3.2),
the representation domain coincides with the basic domain, the symmetry points of
BZ are the same: Γ (0, 0, 0), X(1/2, 1/2, 0), L(1/2, 1/2, 1/2) and W (1/4, 1/2, 3/4) with
the wavevector point groups Oh, D4h, D3d and D2d, respectively. For the third crys-
tal, the wavevector belongs to the simple cubic lattice Brillouin zone (Fig. 3.1), the
representation domain also coincides with basic domain, the symmetry points of BZ
are: Γ (0, 0, 0), R(1/2, 1/2, 1/2), X(1/2, 0, 0) and M(1/2, 1/2, 0) with the wavevector
point groups Oh, Oh, D4h and D4h, respectively. For the symmorphic space groups O5

h

and O1
h the small representations of little groups of symmetry points of BZ coincide

with the ordinary (vector) irreducible representations of the corresponding wavevector
point groups. For nonsymmorphic space group O7

h the small representations of little
groups GΓ , GX , GL and GW were considered in Sect. 3.1.4. For the Γ and L points
the notations given in Table 3.12 are used as the corresponding small representations
are p-equivalent to ordinary representations of point groups Oh and D3d. For the X
and W points the small representations are not p-equivalent to ordinary irreducible
representations of point groups D4h and D2d, respectively. The notations for these
representations were given in Sect. 3.4.

Let us connect the pictures of the calculated band structures with the symmetry
of crystalline orbitals. As for MgO and silicon crystals the dimensions of the corre-
sponding small representations are different at the X and W points, the splitting of
the valence band to one-sheet and three-sheet subbands takes place for MgO, but for
Si crystal the valence band is not split. In the symmetry directions of the Brillouin
zone the compatibility relations are used to explain the energy-level splittings. The
compatibility relations for space groups O5

h and O7
h are given in Table 3.14 and in

Table 3.13 for space group O1
h.

For the symmetry directions in the Brillouin zone ∆(ΓX), Λ(ΓL), Σ (see Fig. 3.2)
the small representations of both space groups are p-equivalent to ordinary irreducible
representations of point groups C4v, C3v and C2v. The notations of these represen-
tations are taken from [17]. For symmetry directions on the surface of the Brillouin
zone Z(XW ), S small representations of space group O5

h are p-equivalent to ordinary
irreducible representations of point group C2v, for the symmetry direction Q – to or-
dinary irreducible representations of group Cs. For the nonsymmorphic space group
O7

h small representations in the symmetry direction Z are not p-equivalent to ordinary
irreducible representations of point group C2v (see Sect. 3.2.2).

In Tables 3.15 and 3.16 we give the notations of induced representations in k-basis
for symmetry points of the Brillouin zone. We include only the band representations
for upper valence bands of all the crystals under consideration.

These bands are induced by the oxygen atom 2s, 2p states in MgO, by the silicon
atom 3s, 3p states in silicon, by the strontium atom 4p states and oxygen atom 2s, 2p
states in SrZrO3. The symmetry of the corresponding crystalline orbitals is given in
Figures 3.3–3.5 and was extracted directly from the tables of the simple induced rep-
resentations of the corresponding space groups given in Sect. 3.2.5 as the Wyckoff
positions occupied by atoms belong to the Q sets in all three structures under con-
sideration For all three crystals the short symbol of the BR in k -basis contains only
the indices of the small IR s for the most symmetrical points of the BZ, because the
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Table 3.14. Compatibility relations for space groups O5
h and O7

h

Γ (O5
h ,O7

h ) 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

∆(ΓX) 1 2 3 4 1,3 2,4 2,5 4,5 1,5 3,5

∆(ΓL) 1 2 2 1 3 3 2,3 1,3 1, 3 2,3

Σ 1 2 4 3 1,4 2,3 2,3,4 1,3,4 1,2,3 1,2,4

X (O5
h ) 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

∆ 1 2 2 1 3 4 4 3 5 5

Z(XW ) 1 2 3 4 1 2 4 3 2,3 1,4

S 1 2 4 3 4 3 1 2 2,3 1,4

X (O7
h ) 1 2 3 4

∆ 1,4 2,3 5 5

Z(XW ) 1 1 1 1

S 1,3 2,4 3,4 1,2

L(O5
h ,O7

h ) 1+ 1− 2+ 2− 3+ 3−

Λ 1 2 2 1 3 3

Q 1 1 2 2 1,2 1,2

W (O5
h ) 1 2 3 4 5 W (O7

h ) 1 2

Z 1 2 2 1 3,4 1 1

Q 1 2 1 2 1,2 1,2 1,2

Table 3.15. Band representations of space groups O5
h and O7

h for upper valence bands of
MgO and Si crystals

Γ X L W

MgO − O5
h

b(1/2, 1/2, 1/2) a1g 1+ 1+ 2− 4

t1u 5− 2−5− 1+3+ 1 5

Si − O7
h

a(0 0 0) a1 1+2− 1 1+2− 1

t2 4−5+ 1 3 4 1+2−3+3− 1 2 2

Table 3.16. Band representations of upper valence bands in SrZrO3 crystal induced from
Sr 4p -, O 2s - and O 2p - atom-like states

Atom states q-basis Γ R M X

Sr 4p− (b, t1u) 4− 5+ 2−5− 1+5+

O 2s− (d, a1g) 1+3+ 4− 1+5− 1+2+3−

O 2pz− (d, a2u) 4− 1+3+ 1+2+3− 1+5−

O 2px,y− (d, eu) 4−5− 4+5+ 3+4+5± 3−4−5±
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indices for all other IR s contained in the BR are determined with the help of com-
patibility relations. These are the states responsible for four-sheet valence bands in
the first two crystals (Fig. 3.4 and Fig. 3.5) and for the 6- and 9-sheet valence bands
in SrZrO3 crystal (Fig. 3.3)

Due to the considered symmetry difference of crystalline orbitals in MgO and
Si crystals the nature of chemical bonding in these crystals is also different. Indeed,
in ionic MgO crystal the splitting of the valence band allows the crystalline orbitals
localized on an oxygen atom to be generated and transformed over a1g and t1u irre-
ducible representations of the oxygen site-symmetry group Oh. In covalent Si crystal
all four sheets of the valence band have to be included in localization so that the
localized orbitals found are centered at the middle of the Si − Si bond.

In SrZrO3 crystal oxygen 2s functions transform according to β = a1g IR of the
oxygen site-symmetry group Gq = D4h and generate a 3-sheeted BR. The symmetry
of states in this band is fully determined by the 2s function of one of three oxygens in
the primitive cell and may be labeled by the symbol (d, a1g) as oxygen atoms occupy
Wyckoff position d in space group O1

h. In Table 3.16 this band, with the symbol of
the BR (d, a1g), is given in k-basis (Γ,R,M,X are the symmetry points of the BZ).

In Sect. 3.2.4 we defined simple and composite BR s. A BR is simple if it does not
consist of two or more BR s of a smaller dimension. All simple BR s for a given space
group are generated by the IR s of site-symmetry groups of just a few points in the
Wigner–Seitz cell of the direct lattice.

In our examples, all the induced irreps are simple, excluding the BR correspond-
ing to the 6-sheeted lower valence subband (see Fig. 3.3). This band representation
is a composite one as it is formed by two simple band representations (d, a1g) and
(b, t1u) induced by O 2s- and Sr 4pstates, respectively. Analysis of the space sym-
metry of crystalline orbitals is used to consider the possible centers of localization of
chemical bonding in crystals. This task requires the Wannier-function definition and
is considered in the next section.

3.3 Symmetry of Localized Crystalline Orbitals.
Wannier Functions

3.3.1 Symmetry of Localized Orbitals and Band Representations
of Space Groups

The localized molecular orbitals (LMO) are extensively used not only for the chemical-
bonding analysis in molecules but also in the local correlation methods [41](we con-
sider the problem of electron correlation in molecules and crystals in Chap. 5). The
LMO are generated from the canonical MO occupied by electrons and found in the
Hartree–Fock or DFT calculations. This generation is based on one or other localiza-
tion criteria [42].

Localized crystalline orbitals (LCO) are generated from a canonical delocalized
Bloch functions (CO). As in the case of the molecules one or other localization cri-
teria is used. The orthonormalized LCO in crystals are known as Wannier functions.
Wannier functions (WFs) have attracted much attention in solid-state physics since
their first introduction in 1937 [43] and up to now. The analytical behavior of Bloch


