

Solving and refining crystal structures using symmetry modes: FullProf + AMPLIMODES.

Juan Rodríguez-Carvajal

Diffraction Group Institut Laue-Langevin FRANCE

Overview of the Symmetry Analysis in phase transitions

Outline

- How is implemented the use of symmetry modes in *FullProf*
- Detailed examples: Janh-Teller transition in LaMnO₃

Symmetry and Phase Transitions

In a displacive phase transition the symmetry-breaking distortion (with respect to the high symmetry phase) is mainly caused by the freezing of the *primary mode*, *associated* with the order parameter.

In general, *secondary modes are* also triggered at the transition and can have non-zero amplitudes in the distorted structure.

The symmetry-mode analysis of a structural phase transition consists on the calculation of the amplitudes of the symmetry modes frozen in the distortion characterized by the eigenvectors of both primary and secondary modes present in the distortion.

Symmetry and Phase Transitions

Modes are collective correlated atomic displacements fulfilling certain symmetry properties. Structural distortions can be decomposed into contributions from different modes with symmetries given by **irreducible representations** of the parent space group.

In general, the use of symmetry-adapted modes in the description of distorted structures introduces a natural physical hierarchy among the structural parameters. This can be useful not only for investigating the physical mechanisms that stabilize these phases, but also for pure crystallographic purposes.

The team of the Bilbao Crystallographic Server has developed the computer program: **AMPLIMODES**, that allows an easy calculation of the decomposition in modes of a distorted crystal structure with respect to a (virtual) high symmetry structure.

The originality of this approach with respect to more classical ones (e.g. BasIreps, MODY, Sarah, ...) is that the **polarization vectors are referred to the basis of the low symmetry phase**, allowing to use conventional crystallographic approaches (asymmetric unit and space group operators) to the crystal structure analysis.

AMPLIMODES: Symmetry mode analysis on the Bilbao Crystallographic Server, D. Orobengoa, C.Capillas, M.I. Aroyo and J.M. Perez-Mato, **JApplCryst**. (in press)

Distorted structures in terms of modes

Let $r(\mu)$ be the positions of the atoms μ ($\mu = 1,...s$) within an asymmetric unit of the parent structure with space group **H**. The asymmetric unit of the observed distorted structure with lower space group **L**, subgroup of **H**, will in general have a larger number of atoms due to the splitting of the Wyckoff orbits in **H**.

$$\mathbf{r}(\mu, i) = \mathbf{r}_0(\mu, i) + \mathbf{u}(\mu, i)$$

$$\mu = 1, 2, \dots s, \quad i = 1, 2, \dots n_{\mu}$$

$$\mathbf{u}(\mu,i) = \sum_{\tau,m} A_{\tau,m} \, \boldsymbol{\varepsilon}(\tau,m \,|\, \mu,i)$$

The indices τ and m label all possible distinct allowed symmetry-adapted distortion modes. τ stands for the possible different mode symmetries, while m ($m = 1, ..., n_{\tau}$) enumerates the possible different independent modes of a given symmetry.

Distorted structures in terms of modes

$$\mathbf{u}(\mu, i) = \sum_{\tau, m} A_{\tau, m} \, \mathbf{\epsilon}(\tau, m \mid \mu, i) \qquad \mu = 1, 2, \dots s, \quad i = 1, 2, \dots n_{\mu}$$

One can refers to the global polarization vector ε (τ , m), taking all atoms simultaneously, of the mode (τ , m)

The displacements of an atom (μ',i') related by the symmetry operator $\{\mathbf{R}|\mathbf{t}\}$ to the atom (μ,i) are given directly by:

R ε(τ , $m \mid \mu$, i)

The normalization of the polarisation vectors is chosen to verify:

Distorted structures in terms of modes

$$\sum_{\mu,i} mult_{\mu,i} \left| \boldsymbol{\varepsilon}(\tau,m \mid \mu,i) \right|^2 = 1$$

"*mult*_{μ *i*}" represents the multiplicity in a primitive cell of the space group L for the Wyckoff position (μ , *i*).

The following orthogonality relation is verified by the polarization vectors:

$$\sum_{\mu,i} mult_{\mu,i} \mathbf{\varepsilon}(\tau,m \mid \mu,i) \mathbf{\varepsilon}(\tau',m' \mid \mu,i) = \delta_{\tau\tau'} \delta_{mm'}$$

Distorted structures in terms of modes

The distortion modes of the phase with group H having isotropy group equal to L can be called primary, while those with isotropy groups given by subgroups of H which are distinct supergroups of L, are usually termed secondary.

A primary distortion mode is sufficient to produce the observed symmetry breaking between the parent and the observed structure, while secondary distortion modes alone would yield a higher symmetry.

Distorted perovskite: structure type GdFeO₃ Space group: *Pnma*, parent structure *Pm3m*

Group-subgroup chains relating *Pm3m* and *Pnma*

It is also in general very convenient to express the global distortion in terms of the different symmetry components (this is done in AMPLIMODES):

Distorted structures in terms of modes

$$\mathbf{e}(\tau \mid \mu, i) = \sum_{m} a_{\tau,m} \, \mathbf{\epsilon}(\tau, m \mid \mu, i); \quad a_{\tau,m} = \frac{A_{\tau,m}}{\left(\sum_{m} A_{\tau,m}^{2}\right)^{1/2}}$$

Overview of the Symmetry Analysis in phase transitions

Outline

- How is implemented the use of symmetry modes in *FullProf*
- Detailed examples: Janh-Teller transition in LaMnO₃

Refinement of crystal structures using amplitudes of symmetry modes instead of atom positions in FullProf

In **FullProf** the refinement of a crystal structure can be done in terms of symmetry adapted modes. http://www.ill.eu/sites/fullprof/

FullProf uses the polarisation vectors obtained from the output of the program **AMPLIMODES** from the Bilbao Crystallographic Server

http://www.cryst.ehu.es/cryst/amplimodes.html

A low symmetry (LS) crystal structure (Space Group L) is supposed to derive (from a phase transition) from a high symmetry (HS) structure (Space Group H) with $L \subset H$.

The free parameters, instead of atom positions, are the amplitudes of a combination of allowed symmetry modes.

Magnetic structures Magnetic moment of each atom: Fourier series

$$\mathbf{m}_{ljs} = \sum_{\mathbf{k}} \mathbf{S}_{kjs} \ exp \ \mathbf{z}\pi i \mathbf{k} \mathbf{R}_{l}$$

The program **Fp_Studio** performs the above sum and represents graphically the magnetic structure. This program can help to learn about this formalism because the user can write manually the Fourier coefficients and see what is the corresponding magnetic structure immediately.

Web site: http://www.ill.eu/sites/fullprof/

REVERSE ROUP Theory: Symmetry Analysis

Fourier coefficients as linear combinations of the basis functions of the irreducible representation of the propagation vector group G_k

$$\mathbf{S}_{\mathbf{k}js} = \sum_{n\lambda} C^{\nu}_{n\lambda} \mathbf{S}^{\mathbf{k}\,\nu}_{n\lambda} \quad js$$

$$\mathbf{M} \mathbf{h} = p \sum_{j=1}^{n} O_{j} f_{j} \mathbf{h} T_{j} \sum_{n\lambda} C_{n\lambda}^{\nu} \sum_{s} \mathbf{S}_{n\lambda}^{\mathbf{k}\nu} js exp 2\pi i \mathbf{h}_{s} \mathbf{r}_{j}$$

Competing multi-q magnetic structures in HoGe₃ (I & II)

Figure 6. Thermodiffractogram of HoGe₃: (a) in a 2D projection on heating and cooling showing the succession of magnetic phase transitions below $T_{\rm N} = 11$ K at $T_2^{\rm H} = 8.1$ K and $T_3^{\rm H} = 4.8$ K (temperatures given on heating) and (b) in a 3D view on cooling.

Refinement of crystal structures using amplitudes of symmetry modes instead of atom positions in FullProf

The atoms position are calculated from the following formula:

$$\mathbf{r}_{j}^{LS} = \mathbf{r}_{j}^{HS} + \sum_{m} c_{m} Q_{m} \, \boldsymbol{\varepsilon}(m \mid j)$$

Where *j* runs over the atoms in the asymmetric unit of the LS phase The index *m* runs over all contributing modes. It may content modes corresponding to different representations and wave vectors of the H space group (Isotropy subgroups) that are compatible with the L space group.

The polarisation vectors $\varepsilon(m \mid j)$ have normalized components referred to the conventional cell of the LS phase and are provided by **AMPLIMODES**. The refined parameters are the amplitudes Q_m . c_m are normalisation coefficients.

A representation of the modes using arrows and the HS phase can be visualised using **FullProf Studio**

Example of PCR file for FullProf corresponding to the compound $LaMnO_3$

La	MnC)3																	
!							\sim			Syı	nm	etry	mo	des	opt	ion			
! N	at	Dis	Ang	Pr1	Pr2	Pr	3 Jbt	Irf	Isy	Str	Fu	rth		ATZ	ľ.	Nvk	Npr	Mo	re
	4	0	0	0.0	0.0	1.(6	0	0	0		7	9	67.	370) 0	7		1
PI	'bnm <space group="" symbol<="" td=""><td></td></space>																		
!A	ton	n I	Гур		Х		Y		1	Z	B	iso			Oc	C			
La		LZ	A	0	.000	00	0.50	000	0.2	5000	0	.35	050		0.5	50000			
					0.	00	0	.00		0.00		251	.00			0.00			
Mn		M	N	0	.000	00	0.00	000	0.0	0000	0	.21	228		0.5	50000			
					0.	00	0	.00		0.00		261	.00			0.00			
01		0		0	.750	00	0.25	000	0.0	0000	0	.43	965		1.0	0000			
kev	wo	rd			0.	00	0	.00		0.00		271	.00			0.00	NOr		sation
02		0		0	. 500	00	0.50	000	0.7	5000	0	.50	234		0.5	50000		TICI	ents
					0.	01	umboi	ofn	alarie	ation	Voc	tor	mo	doe		.00			
!	Po1	aris	sati	on Ve	ecto	rso	JI SY		ry m	oaes	IO	r e	acn	at	om				
v_ 1	MOE	DES	12)		ndic	ces of	the m	odes								¥		
! 1	Nm	Atm		Irre	ep		v	x		Vy			Vz			С	oeff		
	1	01		R4-	ł		0.00	0000	0.	0000	00	0.	031	721	-	1.	0000	00	
	1	02		R4-	ł		0.06	3442	0.	0000	00	0.	000	000)	1.	0000	00	
	2	La		R5-	ł	-	-0.08	9721	0.	0000	00	0.	000	000)	1.	0000	00	
	3	01		R5-	ł		0.00	0000	0.	0000	00	-0.	031	721	-	1.	0000	00	
		•	•••	• •	••	• •	•												
	7	02		МЗ-	F		0.00	0000	0.	0000	00	0.	000	000)	1.	0000	00	
! :	Amp	olitu	ıdes	of S	Symm	etry	y Mod	es											

Example of PCR file for FullProf corresponding to the compound LaMnO₃

Indices of the modes

! Polarisation Vectors of Symmetry Modes for each atom

<u>v</u> _	MOD	ES 12			Symbols	of the Irre	eduo	cible I	represen	Itations		
!	Nm	Atm	Irrep		Vx	vy		Vz	<u> </u>	Coeff		
	1	01	R4+	(0.00000	0.00000	0	0.031	721	1.000000		
	1	02	R4+	(0.063442	0.00000	0	0.000	000	1.000000		
	2	La	R5+	-0	0.089721	0.00000	0	0.000	000	1.000000		
	3	01	R5+		0.00000	0.00000	0 -	0.031	721	1.000000		
			\ 	PO	larisation	vectors of	com	pone	nts			
	7	02	M3+	(0.00000	0.00000	0	0.000	000	1.000000		
!	Amp	litudes	of Symme	try	Modes							
A _	MODES 7 1111111 Keyword, # of modes, output for FST											
Q1	R4	+	-1.1896	80	181.0000							
Q2	2_R5	+	-0.0864	67	191.0000							
Q3	8_R5	+	0.0181	71	1 201.0000							
Q4	_x5	+	-0.5460	82	211.0000	<u>Name</u>	es o	f amp	litudes,	values and		
Q5	5_x5	+	-0.1399	10	221.0000	refine	eme	nt co	des (allo	wing constraints		
Qe	5_м2	+	0.3556	52	231.0000				•	-		
Q7	_м3	+	0.9012	64	241.0000							
! -		> Pr	ofile Par	amet	ers for	Pattern	#	1				
!	Sc	ale	Shape	1	Bov	Str1		Str2	Str3	Strain-Model		
C	.86	919E-01	0.0000	0	0.00000	0.0000	0.0	0000	0.0000	0		

Overview of the Symmetry Analysis in phase transitions

Outline

- How is implemented the use of symmetry modes in *FullProf*
- Detailed example: Janh-Teller transition in LaMnO₃

Example: The Janh-Teller transition in LaMnO₃

PHYSICAL REVIEW B

VOLUME 57, NUMBER 6

RAPID COMMUNICATIONS

1 FEBRUARY 1998-II

Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO₃

J. Rodríguez-Carvajal,* M. Hennion, F. Moussa, and A. H. Moudden Laboratoire Léon Brillouin (CEA-CNRS), Centre d'Etudes de Saclay, 91191 Gif sur Yvette Cedex, France

L. Pinsard and A. Revcolevschi Laboratoire de Chimie des Solides, Université Paris Sud, 91405 Orsay Cedex, France (Received 2 September 1997)

The parent compound of the giant magnetoresistance Mn-perovskite, LaMnO₃, has been studied by thermal analysis and high-resolution neutron-powder diffraction. The orthorhombic *Pbnm* structure at room temperature is characterized by an antiferrodistorsive orbital ordering due to the Jahn-Teller effect. This ordering is evidenced by the spatial distribution of the observed Mn-O bond lengths. LaMnO₃ undergoes a structural phase transition at $T_{JT} \approx 750$ K, above which the orbital ordering disappears. There is no change in symmetry although the lattice becomes metrically cubic on the high-temperature side. The MnO₆ octahedra become nearly regular above T_{JT} and the thermal parameter of oxygen atoms increases significantly. The observed average cubic lattice is probably the result of dynamic spatial fluctuations of the underlying orthorhombic distortion. [S0163-1829(98)51706-7]

Example: The Janh-Teller transition in $LaMnO_3$

NEUTRONS FOR SCIENCE

		and the second second second	1										
🕲 Bilbao Crystallographic Server - Mozilla F	irefox												
<u>File Edit Vi</u> ew Hi <u>s</u> tory <u>B</u> ookmarks <u>Y</u> ahoo!	<u>T</u> ools <u>H</u> elp		0 ⁰ 0 0 000										
🔇 💽 - C 🗙 🏠 🗋 http://www	w.cryst.ehu.es/	😭 🔹 Google	P										
滷 Most Visited 🌮 Getting Started 🔊 Latest Headline	es 📶 ILL :: Neutrons for sci												
Y! · C ·	🗙 🔶 Search Web 🔹 🚺 🔹	🖄 Mail 🔹 🍘 Shopping 🔹 🎯 My Yahoo! 🕥 News 🔹 🎯 Games 🔹 🍏 Travel 🔹	🛛 🐉 Finance 🔹 🛛 🚿										
🔟 ILL :: Neutrons for science : Instrumen 🗵 📔	CrysFML - Repository - ILL's forge (for.	🖂 📔 eGroupWare [Login] 🛛 🔀 🔀 Bilbao Crystallographic	Server 🛛										
FCT/ZTF bib [The crystallog	DAO CRYSTALL	Ographic server	UPV/EHU										
	[Space Groups] [Layer Groups] [Rod Groups] [Frieze Groups] [Wyckoff Sets]												
CrystallographyOnline:	CENDOS												
the Use and Applications	GENFUS	Generators and General Positions of Space Groups											
oftheBilbao		Poly the second time of Control Control											
Crystallographic	HALCOND	Reflection conditions of Space Groups											
Server	MAXSUB	Maximal Subgroups of Space Groups											
REGISTRATION OPEN	SERIES	Series of Maximal Isomorphic Subgroups of Space Groups											
	WYCKSETS	Equivalent Sets of Wyckoff Positions											
DhD Studentshin	NORMALIZER	Normalizers of Space Groups											
PhD Studentship	KVEC	The k-vector types and Brillouin zones of Space Groups											
Sections	Group Subgroup Pel	ations of Snace Crouns											
Retrieval Tools	Group - Subgroup Ker	ations of space Groups											
Group-Subgroup	SUBGROUPGRAPH	Lattice of Maximal Subgroups											
Representations	HERMANN	Distribution of subgroups in conjugated classes											
Solid State	COSETS	Coset decomposition for a group-subgroup pair											
Structure Utilities	WYCKSPLIT	The splitting of the Wyckoff Positions											
Subperiodic	MINSUP	Minimal Supergroups of Space Groups											
	SUDEDCDOUDS	Supararoupe of Space Croupe	~										
Done													

😻 Bilbao Crystallographic Server - Mozilla Fi	refox								
Eile Edit View Higtory Bookmarks Yahoo!]	jools <u>H</u> elp								
🔇 💽 🗸 🔂 🗋 http://www	cryst.ehu.es/	😭 🔹 🔂 🖌 Google							
🔎 Most Visited 🌮 Getting Started 底 Latest Headline	s 📶 ILL :: Neutrons for sci								
Y! · & ·	🗸 🔶 Search Web 🔹 🚺 🔹	🛛 Mail 🔹 🏐 Shopping 🔹 🎯 My Yahoo! 🛐 News 🔹 🎯 Games 🔹 🍏 Travel 🔹 🐉 Finance 🔹							
ILL :: Neutrons for science : Instrumen 🖂 📘	CrysFML - Repository - ILL's forge (fo	r 🗵 📴 eGroupWare [Login] 🛛 🔯 📑 Bilbao Crystallographic Server 🛛 🔯							
modes.	POINT	Point Group Tables							
TRANSTRU	SITESYM	Site symmetry induced representations of Space Groups							
5-2008: Transform structures to	SILCIM	Site-syntheury induced representations of Space Gloups							
lower symmetry Space Group basis.									
	Solid State Theory Ar	nlicatione							
AMPLIMODES 2-2008: Symmetry Mode Analysis	Solid State Theory Applications								
of Structural Phase Transitions.	SAM	Spectral Active Modes (IR and RAMAN Selection Rules)							
CELLSUPER	NEUTRON	Neutron Scattering Selection Rules							
10-2007: New version of program	SYMMODES	Primary and Secondary Modes for a Group - Subgroup pair							
CELLSOPER.	AMPLIMODES	Symmetry Mode Analysis							
TRANPATH	PSEUDO	Pseudosymmetry Search in a Structure							
7-2007: Minor update and fixes.	DOPE	Degree of Pseudosymmetry Estimation							
SUPERGROUPS	BPLOT	Pseudosymmetry Search with KPLOT							
6-2007: Added link to Wyckoff Positions splitting.	TRANPATH	Transition Paths (Group not subgroup relations)							
SERIES									
1-2007: New version of series of									
a given maximum index.	Structure Utilities								
SIMPLE RETRIEVAL	CELLTRAN	Transform Unit Cells							
TOOLS	STRAIN	Strain Tensor Calculation							
1-2007: Minor upgrade for GENPOS, WYCKPOS, MAXSUB	WPASSIGN	Assignment of Wyckoff Positions							
and SERIES programs.	TRANSTRU	Transform structures to lower symmetry Space Group basis.							
HERMANN	SETSTRU	Alternative Settings for a given Crystal Structure							
1-2007: New version of program	EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure							
SETSTRU									
1-2007: CI⊢ input data, JMOL visualization and minor bugs fixed	Subperiodic Groups:	Layer, Rod and Frieze Groups Retrieval Tools							

http://www.cryst.ehu.es/cryst/amplimodes.html

NEUTRONS FOR SCIENCE

AMPLIMODES: Bilbao Crystallographic Server

AMPLIMODES for FullProf - Mozilla Firefox								
ile Edit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>Y</u> ahoo! <u>T</u> ools	<u>H</u> elp	<u> </u>						
🖌 💽 🗸 🖒 🗋 http://www.cryst	ehu.es/html/cryst/full-m	odes.html 🗘 🔹 🖸 Google 🔎						
🛿 Most Visited 🐢 Getting Started 脑 Latest Headlines 🏧	ILL :: Neutrons for sci							
Y! · & ·	🗸 🔶 Search Web 🔹	🔰 🔹 🖄 Mail 🔹 🏐 Shopping 🔹 🎯 My Yahoo! 🛐 News 🔹 🎯 Games 🔹 🍏 Travel 🔹 🐉 Finance 🔹 🛛 🛸						
ILL :: Neutrons for science : I 🗵 📄 CrysFML - Repo	ository - ILL's f 🖂 🚺	eGroupWare [Login] 🛛 🖉 ILL :: Neutrons for science : C 🛛 📑 AMPLIMODES for FullProf 🛛 🔀 🔹						
Symmetry modes for FullProf	Structure data	Browse_						
AMPLIMODES carries out a symmetry-mode analysis of a displacive phase transition. Starting from the experimental structures of the high- and low symmetry phases, the program determines the global structural distortion that relates the two phases. The symmetry modes compatible with the symmetry break are then calculated. Their orthogonality permits the decomposition of the global distortion obtaining the amplitude of each symmetry mode as well as the	High Symmetry Structure	<pre>f Space Group ITA number 221 # Lattice parameters 3.8 3.8 3.8 90 90 90 # Number of independent atoms in the asymmetric unit 3 # [atom type] [number] [WP] [x] [y] [z] Ca 1 1b 0.5 0.5 0.5 Ti 1 1a 0.0 0.0 0.0 0 1 3d 0.5 0.0 0.0</pre>						
corresponding eigenvectors.	For the low symmetry structure, only the space group and the lattice parameters are necessary, the structure is optional, if given, the program will return the amplitudes of the modes.							
 The information about the structures of the high- and low symmetry phases: Space group number, lattice parameters and relative atomic coordinates of the asymmetric unit. The transformation matrix that relates the basis of the two space groups. 	Low Symmetry Structure	Browse_ # Space Group ITA number 62 # Lattice parameters 5.440791 7.644515 5.379452 90 90 90 # Number of independent atoms in the asymmetric unit 4 # [atom type] [number] [WP] [x] [y] [z] Ca 1 4c 0.03539 0.25000 -0.00483 Ti 1 4b 0.50000 0.00000 0.00000 0 1 4c 0.48475 0.25000 0.07094 0 2 8d 0.28945 0.03690 0.70986						
one	Maximum ∆	1.5 [Maximum distance allowed]						

NEUTRONS FOR SCIENCE

AMPLIMODES: Bilbao Crystallographic Server

AMPLIMODES for FullProf - Mozilla Firefox		
<u>File Edit View History Bookmarks Yahoo! Tools</u>	<u>H</u> elp	
C X 🟠 http://www.crys	t.ehu.es/html/cryst/full-m	odes.html 🟠 🔹 🔂 🖓
🙆 Most Visited 🏶 Getting Started 🔝 Latest Headlines 🏧	ILL :: Neutrons for sci	
Y! · C ·	🖌 🔶 Search Web 🔹	🔰 🔹 🖄 Mail 🔹 🏐 Shopping 🔹 🎯 My Yahoo! 🖄 News 🔹 🤪 Games 🔹 🍏 Travel 🔹 🐉 Finance 🔹 🛛 🛸
ILL :: Neutrons for science : Instrumen 🗵 📋 CrysF	ML - Repository - ILL's for	ge (for 🗵 🔄 eGroupWare [Login] 🛛 📄 AMPLIMODES for FullProf 🛛 🔹
 corresponding eigenvectors. The input of the program consists of: The information about the structures of the high- and low symmetry phases: Space group number, lattice parameters and relative atomic coordinates of the asymmetric unit. The transformation matrix that relates the basis of the two space groups. 	For the low sym structure is option Low Symmetry Structure	metry structure, only the space group and the lattice parameters are necessary, the onal, if given, the program will return the amplitudes of the modes. Browse
	Maximum Δ Transformation Matrix In matrix form:	1 [Maximum distance allowed] Rotational part Origin Shift 1 0 -1 0.5 0 2 0 0 1 0 1 0.5
		Show
	[Bilbao C	Crystallographic Server Main Menu]
Done		

-				the second s			
🕲 Sym	nmetry mo	des for Ful	IProf - Mozilla Firefo	ж			
<u>F</u> ile E	<u>E</u> dit <u>V</u> iew	Hi <u>s</u> tory <u>B</u> o	ookmarks <u>Y</u> ahoo! <u>T</u> oo	ls <u>H</u> elp			*** ***
\bigcirc	> - C	: × 4	http://www.cr	yst.ehu.es/cgi-bin/cryst/p	programs/nph-full-modes	☆ • Google	P
🔎 Most	t Visited 🥐	Getting Start	ed 脑 Latest Headlines	ILL :: Neutrons for sci			
`Y !	• 🖉 •			🖌 🔶 Search Web	• 🔰 • 🔯 Mail 🔹 🏐 Shopping 🔹 🎯 My Yahoo!	🖏 News 🔹 🤀 Games 🔹 🍏 Travel 🔹 🐉 Finance 🔹	»
ill ILL	. :: Neutrons	for science : I	instrumen 🗵 📘 Cry	/sFML - Repository - ILL's f	forge (for 🖂 🗧 eGroupWare [Login]	🗵 📄 Symmetry modes for FullProf 🛛 🗵	•
Trai	nsform	ed high	symmetry st	ructure in the	subgroup basis		^
062 5.374 4	4012 7.6	00000 5.3	374012 90.000000	90.000000 90.00	00000		
Ca	1	4c	0.000000	0.250000	0.00000		
Ti	1	4b	0.500000	0.00000	0.00000		
0	1	8d	0.750000	0.00000	0.750000		

0.000000

Symmetry Modes Summary

4c

1 8d

1_2

0

Atoms	WP	Modes	Show Modes
01	3d	R4+(1) R5+(1) X5+(1) M2+(1) M3+(1)	Show
Ca1	1 <i>b</i>	R5+(1) X5+(1)	Show

0.500000

You can copy and paste the following text on your .pcr file

062		<5	pace gro	up symbo.	1					
!Atom	Typ	X	Y	Z	Biso	0cc	In	Fin	N_t	Spc /Codes
Ca1	CA	0.000000 0.	250000	0.000000	0.500000	0.500000	0	0	0	1
		0.00	0.00	0.00	0.00	0.00				
Ti1	TI	0.500000 0.	000000	0.000000	0.500000	0.500000	0	0	0	1
		0.00	0.00	0.00	0.00	0.00				
01	0	0.750000 0.	000000	0.750000	0.500000	1.000000	0	0	0	1
		0.00	0.00	0.00	0.00	0.00				
01_2	0	0.500000 0.	250000	0.000000	0.500000	0.500000	0	0	0	1
		0.00	0.00	0.00	0.00	0.00				
! Pol	arisation	Vectors of S	ymmetry	Modes fo:	r each ato	DM				
V_MOD:	ES 12									
! Nm .	Atm I:	rrep Vx	V	У	Vz	Coeff				
10	1 R4+	0.00000	0.0328	95 -0.00	0000 1.00					
10	1_2 R4+	0.00000	0.0000	00 0.06	5789 1.00					
2 C	al R5+	0.00000	0.0000	00 -0.09	3040 1.00					
30	1 R5+	0.00000	-0.0328	95 0.00	0000 1.00					
30	1_2 R5+	0.00000	0.0000	00 0.06	5789 1.00					
4 C	al X5+	-0.093040	0.0000	00 0.00	0000 1.00					
50	1 X5+	0.00000	0.0000	00 0.00	0000 1.00					
50	1_2 X5+	0.093040	-0.0000	00 -0.00	0000 1.00					
60	1 M2+	-0.046520	0.0000	00 0.04	6520 1.00					
60	1_2 M2+	U.000000	U.0000	00 0.00	0000 1.00					
70	1 M3+	-0.046520	0.0000	00 -0.04	6520 1.00					
Done										

0.250000

NEUTRONS

FOR SCIENCE

Example of *FullProf* running a refinement of LaMnO3 using symmetry modes

NEUTRONS

FOR SCIENCE

👪 FullProf Program	
Load Edit PCR Mode Run Exit	
=> Bragg R-factor: 4.651 => RF-factor : 3.019	
<pre>=> Convergence reached at this CYCLE !!!!: CYCLE No. 15 => R-Factors: 4.94 5.79 Chi2: 2.11 DW-Stat.: 1.0292 Patt#: 1 => Expected : 3.98 1.8768 => Conventional Rietveld R-factors for Pattern: 1 => Rp: 9.07 Rwp: 8.89 Rexp: 6.12 Chi2: 2.11 => Global user-weigthed Chi2 (Bragg contrib.): 2.150 =>> Pattern# 1 => Bragg R-factor: 4.651 => RF-factor : 3.019 => Normal end, final calculations and writing</pre>	
<pre>=> CPU Time: 9.453 seconds => 0.158 minutes</pre>	
=> END Date:19/08/2008 Time => 01:44:25.133	
Cycle: 15 lamn_3t2.dat	

NEUTROI FOR SCIEN Load Edit PCR Mode Run Exit

```
=> START Date:20/09/2008 Time => 15:33:20.281
=> Reading control file *.PCR ...
=> End of preliminary calculations !
=> **** SIMULATED ANNEALING SEARCH FOR STARTING CONFIGURATION
=> Initial configuration cost:
                               107.15
=> Initial configuration state vector:
      Q1 R4+
               Q2 R5+
                        Q3 R5+
                                          Q5 X5+
                                                   Q6 M2+
=>
                                 Q4 X5+
                                                           Q7 M3+
           1
                    2
                             3
                                      4
                                               5
                                                        6
=>
                                                                 7
      0.0000
               0.0000
                       0.0000
                                          0.0000
                                                   0.0000
=>
                                 0.0000
                                                            0.0000
=> NT: 1 Temp: 6.00 (%Acc): 42.04 <Step>: 4.0000 <Rp-factor>: 85.4356
=> NT: 2 Temp: 5.70 (%Acc): 56.12 <Step>: 3.7571 <Rp-factor>: 86.7607
=> NT: 3 Temp: 5.41 (%Acc): 24.49 <Step>: 3.8286 <Rp-factor>: 65.8903
=> NT: 4 Temp: 5.14 (%Acc): 32.04 <Step>: 2.2809 <Rp-factor>: 56.3059
```


~

=> ****

NEUTRON FOR SCIEN

=>	Initial configuration cost: 107.15													
=>	Initial configuration state vector:													
=>		Q1_	_R4+	Q2_R5+	Q3_R	5+ Q	4_X5+	Q5_	_X5+	Q6_M2+	Q7_M3+	F		
=>			1	2		3	4		5	6	7	7		
=>		0.0	0000	0.0000	0.000	0 00	.0000	0.0	0000	0.0000	0.0000)		
=>	NT:	1	Temp:	6.00	(%Acc):	42.04	<step< td=""><td>>:</td><td>4.0000</td><td>) <rp-:< td=""><td>factor>:</td><td>85.4356</td></rp-:<></td></step<>	>:	4.0000) <rp-:< td=""><td>factor>:</td><td>85.4356</td></rp-:<>	factor>:	85.4356		
=>	NT:	2	Temp:	5.70	(%Acc):	56.12	<step< td=""><td>>:</td><td>3.7571</td><td>l <rp-:< td=""><td>factor>:</td><td>86.7607</td></rp-:<></td></step<>	>:	3.7571	l <rp-:< td=""><td>factor>:</td><td>86.7607</td></rp-:<>	factor>:	86.7607		
=>	NT:	3	Temp:	5.41	(%Acc):	24.49	<step< td=""><td>>:</td><td>3.8286</td><td>5 <rp-:< td=""><td>factor>:</td><td>65.8903</td></rp-:<></td></step<>	>:	3.8286	5 <rp-:< td=""><td>factor>:</td><td>65.8903</td></rp-:<>	factor>:	65.8903		
=>	NT:	4	Temp:	5.14	(%Acc):	32.04	<step< td=""><td>>:</td><td>2.2809</td><td>) <rp-:< td=""><td>factor>:</td><td>56.3059</td></rp-:<></td></step<>	>:	2.2809) <rp-:< td=""><td>factor>:</td><td>56.3059</td></rp-:<>	factor>:	56.3059		
=>	NT:	- 5	Temp:	4.89	(%Acc):	31.02	<step< td=""><td>>:</td><td>1.6271</td><td><rp-:< td=""><td>factor>:</td><td>49.8507</td></rp-:<></td></step<>	>:	1.6271	<rp-:< td=""><td>factor>:</td><td>49.8507</td></rp-:<>	factor>:	49.8507		
=>	NT:	6	Temp:	4.64	(%Acc):	47.76	<step< td=""><td>>:</td><td>1.1245</td><td>5 <rp-:< td=""><td>factor>:</td><td>48.1753</td></rp-:<></td></step<>	>:	1.1245	5 <rp-:< td=""><td>factor>:</td><td>48.1753</td></rp-:<>	factor>:	48.1753		
=>	NT:	7	Temp:	4.41	(%Acc):	34.29	<step< td=""><td>>:</td><td>1.1456</td><td>5 <rp-:< td=""><td>factor>:</td><td>33.1074</td></rp-:<></td></step<>	>:	1.1456	5 <rp-:< td=""><td>factor>:</td><td>33.1074</td></rp-:<>	factor>:	33.1074		
=>	NT:	8	Temp:	4.19	(%Acc):	42.24	<step< td=""><td>>:</td><td>0.8090</td><td>) <rp-:< td=""><td>factor>:</td><td>35.1309</td></rp-:<></td></step<>	>:	0.8090) <rp-:< td=""><td>factor>:</td><td>35.1309</td></rp-:<>	factor>:	35.1309		

~

Kall FullProf Program

20

30

NEUTRON FOR SCIEN

=> **** SIMULATED ANNEALING SEARCH FOR STARTING CONFIGURATION ****

=> =>	Init	tial cor	figurat.	ion cost ion state	: 10 ⁷ e vecto	7.15 or:				
=>		Q1 R4+	Q2 R5	+ Q3_R	5+ Q4	4 X5+	Q5 X5+	Q6 M2+	Q7_M3+	F
=>		- 1	_	2 –	3	4	5	6		7
=>		0.0000	0.000	0.00	00 0	.0000	0.0000	0.0000	0.000)
=>	NT:	1 Temp	o: 6.00	(%Acc):	42.04	<step></step>	: 4.00	00 <rp-1< td=""><td>Eactor>:</td><td>85.4356</td></rp-1<>	Eactor>:	85.4356
=>	NT:	2 Temp	o: 5.70	(%Acc):	56.12	<step></step>	: 3.75	71 <rp-1< td=""><td>Eactor>:</td><td>86.7607</td></rp-1<>	Eactor>:	86.7607
=>	NT:	3 Temp	b: 5.41	(%Acc):	24.49	<step></step>	: 3.82	86 <rp-1< td=""><td>Eactor>:</td><td>65.8903</td></rp-1<>	Eactor>:	65.8903
=>	NT:	4 Temp	b: 5.14	(%Acc):	32.04	<step></step>	: 2.28	09 <rp-1< td=""><td>factor>:</td><td>56.3059</td></rp-1<>	factor>:	56.3059
=>	NT:	5 Temp	a: 4.89	(%Acc):	31.02	<step></step>	: 1.62	71 <rp-1< td=""><td>Eactor>:</td><td>49.8507</td></rp-1<>	Eactor>:	49.8507
=>	NT:	6 Temp	b: 4.64	(%Acc):	47.76	<step></step>	: 1.12	45 <rp-1< td=""><td>Eactor>:</td><td>48.1753</td></rp-1<>	Eactor>:	48.1753
=>	NT:	7 Temp	. 4.41	(%Acc):	34.29	<step></step>	: 1.14	56 <rp-1< td=""><td>tactor>:</td><td>33.1074</td></rp-1<>	tactor>:	33.1074
=>	NT:	8 Temp): 4.19	(%Acc):	42.24	<step></step>	: 0.80	90 <rp-1< td=""><td>tactor>:</td><td>35.1309</td></rp-1<>	tactor>:	35.1309
_ =>	N.T. :	9 Temp	5.98	(SACC):	42.04	<step></step>	: 0./4	18 <kb-1< td=""><td>tactor>:</td><td>28.3311</td></kb-1<>	tactor>:	28.3311

Function evaluations: 4411 lamn_san.int 900units) 800-700-600-(arb. 500-400-300-Intensity 200-100 0 -100--200

50

60

70

80 2Theta

40

~

^

2

NEUTRON FOR SCIEN

^

=>	Init	tıa.	L conf:	ıguratı	on cost	: 10	1.15				
=>	Init	tial	l conf:	igurati	on state	e vecto	or:				
=>		Q1	R4+	Q2 R5+	Q3 R5	5+ Q4	4 X5+	Q5 X5+	Q6 M2+	Q7 M3-	+
=>		-	1	2	_	3	- 4	5	6		7
=>		0.0	0000	0.0000	0.000	0 0	.0000	0.0000	0.0000	0.000	0
=>	NT:	1	Temp:	6.00	(%Acc):	42.04	<step></step>	: 4.0	000 <rp-< td=""><td>factor>:</td><td>85.4356</td></rp-<>	factor>:	85.4356
=>	NT:	2	Temp:	5.70	(%Acc):	56.12	<step></step>	: 3.7	571 <rp-< td=""><td>factor>:</td><td>86.7607</td></rp-<>	factor>:	86.7607
=>	NT:	3	Temp:	5.41	(%Acc):	24.49	<step></step>	: 3.8	286 <rp-< td=""><td>factor>:</td><td>65.8903</td></rp-<>	factor>:	65.8903
=>	NT:	4	Temp:	5.14	(%Acc):	32.04	<step></step>	: 2.2	-qR> 809	factor>:	56.3059
=>	NT:	5	Temp:	4.89	(%Acc):	31.02	<step)< td=""><td>: 1.6</td><td>271 <rp-< td=""><td>factor>:</td><td>49.8507</td></rp-<></td></step)<>	: 1.6	271 <rp-< td=""><td>factor>:</td><td>49.8507</td></rp-<>	factor>:	49.8507
=>	NT:	6	Temp:	4.64	(%Acc):	47.76	<step)< td=""><td>: 1.1</td><td>245 <rp-< td=""><td>factor>:</td><td>48.1753</td></rp-<></td></step)<>	: 1.1	245 <rp-< td=""><td>factor>:</td><td>48.1753</td></rp-<>	factor>:	48.1753
=>	NT:	7	Temp:	4.41	(%Acc):	34.29	<step)< td=""><td>: 1.1</td><td>456 <rp-< td=""><td>factor>:</td><td>33.1074</td></rp-<></td></step)<>	: 1.1	456 <rp-< td=""><td>factor>:</td><td>33.1074</td></rp-<>	factor>:	33.1074
=>	NT:	8	Temp:	4.19	(%Acc):	42.24	<step< td=""><td>: 0.8</td><td>−αЯ> 090</td><td>factor>:</td><td>35.1309</td></step<>	: 0.8	−αЯ> 090	factor>:	35.1309
=>	NT:	9	Temp:	3.98	(%Acc):	42.04	<step></step>	: 0.7	418 <rp-< td=""><td>factor>:</td><td>28.3311</td></rp-<>	factor>:	28.3311
=>	NT:	10	Temp:	3.78	(%Acc):	49.39	<step></step>	: 0.6	-qR> 86	factor>:	38.8114

¥

	 n 1	
A 140 1	 Urot	 naram
	F UI	uer ann
data and the	 	

NEUTRON FOR SCIEN

^

=>	NT:	6	Temp:	4.64	(%Acc):	47.76	<step>:</step>	1.1245	<rp-factor>:</rp-factor>	48.1753
=>	NT:	7	Temp:	4.41	(%Acc):	34.29	<step>:</step>	1.1456	<rp-factor>:</rp-factor>	33.1074
=>	NT:	8	Temp:	4.19	(%Acc):	42.24	<step>:</step>	0.8090	<rp-factor>:</rp-factor>	35.1309
=>	NT:	9	Temp:	3.98	(%Acc):	42.04	<step>:</step>	0.7418	<rp-factor>:</rp-factor>	28.3311
=>	NT:	10	Temp:	3.78	(%Acc):	49.39	<step>:</step>	0.6986	<rp-factor>:</rp-factor>	38.8114
=>	NT:	11	Temp:	3.59	(%Acc):	43.88	<step>:</step>	0.6925	<rp-factor>:</rp-factor>	35.3227
=>	NT:	12	Temp:	3.41	(%Acc):	42.24	<step>:</step>	0.6375	<rp-factor>:</rp-factor>	30.5381
=>	NT:	13	Temp:	3.24	(%Acc):	50.41	<step>:</step>	0.5964	<rp-factor>:</rp-factor>	34.7674
=>	NT:	14	Temp:	3.08	(%Acc):	57.14	<step>:</step>	0.5964	<rp-factor>:</rp-factor>	43.1870
=>	NT:	15	Temp:	2.93	(%Acc):	33.67	<step>:</step>	0.6340	<rp-factor>:</rp-factor>	20.1178
=>	NT:	16	Temp:	2.78	(%Acc):	54.08	<step>:</step>	0.4866	<rp-factor>:</rp-factor>	28.4385
=>	NT:	17	Temp:	2.64	(%Acc):	42.24	<step>:</step>	0.5231	<rp-factor>:</rp-factor>	25.6775
=>	NT:	18	Temp:	2.51	(%Acc):	41.22	<step>:</step>	0.4843	<rp-factor>:</rp-factor>	20.3788
=>	NT:	19	Temp:	2.38	(%Acc):	50.00	<step>:</step>	0.4271	<rp-factor>:</rp-factor>	20.7542
=>	NT:	20	Temp:	2.26	(%Acc):	40.61	<step>:</step>	0.4271	<rp-factor>:</rp-factor>	19.0894
=>	NT:	21	Temp:	2.15	(%Acc):	40.00	<step>:</step>	0.3790	<rp-factor>:</rp-factor>	17.4597

10291 Function evaluations: lamn_san.int 900units) 800-700-600-(arb. 500-400-300-Intensity 200-100 0 -100 -200 20 30 40 50 60 70 80 2Theta

×

🏙 FullProf Program (Not Responding)

	×
--	---

^

NEUTRON											
FOR SCIEN	=>	NT:	13	Temp:	3.24	(%Acc):	50.41	<step>:</step>	0.5964	<rp-factor>:</rp-factor>	34.7674
	=>	NT:	14	Temp:	3.08	(%Acc):	57.14	<step>:</step>	0.5964	<rp-factor>:</rp-factor>	43.1870
	=>	NT:	15	Temp:	2.93	(%Acc):	33.67	<step>:</step>	0.6340	<rp-factor>:</rp-factor>	20.1178
	=>	NT:	16	Temp:	2.78	(%Acc):	54.08	<step>:</step>	0.4866	<rp-factor>:</rp-factor>	28.4385
	=>	NT:	17	Temp:	2.64	(%Acc):	42.24	<step>:</step>	0.5231	<rp-factor>:</rp-factor>	25.6775
	=>	NT:	18	Temp:	2.51	(%Acc):	41.22	<step>:</step>	0.4843	<rp-factor>:</rp-factor>	20.3788
	=>	NT:	19	Temp:	2.38	(%Acc):	50.00	<step>:</step>	0.4271	<rp-factor>:</rp-factor>	20.7542
	=>	NT:	20	Temp:	2.26	(%Acc):	40.61	<step>:</step>	0.4271	<rp-factor>:</rp-factor>	19.0894
	=>	NT:	21	Temp:	2.15	(%Acc):	40.00	<step>:</step>	0.3790	<rp-factor>:</rp-factor>	17.4597
	=>	NT:	22	Temp:	2.04	(%Acc):	44.90	<step>:</step>	0.3499	<rp-factor>:</rp-factor>	16.5334
	=>	NT:	23	Temp:	1.94	(%Acc):	45.92	<step>:</step>	0.3413	<rp-factor>:</rp-factor>	17.2707
	=>	NT:	24	Temp:	1.84	(%Acc):	46.33	<step>:</step>	0.3162	<rp-factor>:</rp-factor>	15.8605
	=>	NT:	25	Temp:	1.75	(%Acc):	50.20	<step>:</step>	0.3022	<rp-factor>:</rp-factor>	17.9183
	=>	NT:	26	Temp:	1.66	(%Acc):	43.06	<step>:</step>	0.3022	<rp-factor>:</rp-factor>	13.5925
	=>	NT:	27	Temp:	1.58	(%Acc):	40.61	<step>:</step>	0.2821	<rp-factor>:</rp-factor>	14.2617
	=>	NT:	28	Temp:	1.50	(%Acc):	47.35	<step>:</step>	0.2455	<rp-factor>:</rp-factor>	12.0899

×

Visualisation of single modes using FullProf Studio

- A part from the normal FST file generated normally for the final crystal structure, **FullProf** outputs a series of FST files containing
- The "virtual structures" corresponding to single modes (e.g. A_MODES 7 000000)
- A representation of the high symmetry phase together with arrows indicating the displacement of atoms in the corresponding mode:

(e.g. A_MODES 7 111111)

• Both kinds of representations depending on the mode (e.g. A_MODES 7 1001101)

The items after the number of modes are:

p_mode(i) i=1,... n_modes

Crystal Structure of LaMnO₃

Mode 1, Q1_R4+ = -1.18968O1 R4+ (0.0, 0.0, 0.031721) O2 R4+ (0.063442, 0.0, 0.0)

Mode 3, Q3_R5+ = 0.018171O1 R5+ (0.0, 0.0, -0.031721) O2 R5+ (0.063442, 0.0, 0.0)

Mode 5, Q5_X5+ = -0.139910 O2 X5+ (0.0, -0.089721, 0.0) Mode 4, Q4_X5+ = -0.546082 La X5+ (0.0, -0.089721, 0.0)

Mode 7, Q7_M3+ = 0.901264 O1 M3+ (-0.04486, -0.04486, 0.0)

Mode 6, Q6_M2+ = 0.355652 O1 M2+ (0.04486, -0.04486, 0.0)

Visualisation of Irreps modes using FullProf Studio

If the value of **p_mode(1)=2** (see note of 29 August 2008 in **fp2k.inf**) the other values are not needed.

The program interprets this value as and indication to output in the FST and OUT files the structures corresponding to single irreducible representations (Irreps).

All modes corresponding to a single Irrep are combined in the FST file.

Visualisation of modes-using FullProf Studio: Summary Examples:

A_MODES 7 7 \rightarrow All the 7 independent modes are represented by displacement vectors (arrows)

A_MODES 7 -7 \rightarrow All the 7 independent modes are represented by virtual distorted structures

A_MODES 7 -3 \rightarrow No output of independent modes in FST files

Visualisation of single modes using FullProf Studio

Examples:

- A_MODES 7 2 \rightarrow Modes regrouped in an FST file per irreducible representation (arrows)
- A_MODES 7 -2 \rightarrow Modes regrouped in an FST file per irreducible representation (structures)
- A_MODES 7 1110110 \rightarrow Explicit output of all modes (1: arrows, 0: distorted structure)

Visualisation of single modes using FullProf Studio

Examples:

A_MODES 7 4 1 3 -4 7 \rightarrow Only the 4 modes 1,3,4 and 7 are ouput in FST files. All of them, except the mode 4, are represented by arrows.

A more complex case: LiMn₂O₄

A complex structure determined and refined with FullProf

VOLUME 81, NUMBER 21

PHYSICAL REVIEW LETTERS

23 NOVEMBER 1998

Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn₂O₄

J. Rodríguez-Carvajal,¹ G. Rousse,² C. Masquelier,² and M. Hervieu³

¹Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif sur Yvette Cedex, France ²Laboratoire de Chimie des Solides, Université Paris-Sud, 91405 Orsay Cedex, France ³CRISMAT, ISMRA, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex, France (Received 13 July 1998)

LiMn₂O₄ presents a first order structural transition at 290 K that was known to perturb the functioning as cathode in rechargeable Li batteries. We have solved the structure at 230 K and deciphered unambiguously the nature of this phase transition. The analysis of valence bond sums shows that the transition results from a partial charge ordering: two of the five Mn sites correspond to well-defined Mn⁴⁺ and the other three sites are close to Mn³⁺ ions. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mn³⁺ ions. The microscopic details obtained from the structure are crucial for understanding the electron hopping persisting below the transition. [S0031-9007(98)07667-4]

NEUTRONS FOR SCIENCE

Electronic crystallization in a Li battery material: columnar ordering of electron and holes in the spinel LiMn₂O₄

J. Rodríguez-Carvajal, G. Rousse, Ch. Masquelier and M. Hervieu *Physical Review Letters*, **81**, 4660 (1998)

J. Rodríguez-Carvajal et al, PRL, 81, 4660 (1998)

b = 24.8402(5) Ac = 8.1989(1) Å

Refinement of the charge-ordered phase

LiMn₂O₄: Partial Charge Ordering FOR SCIENCE

<Mn-O> = 1,996(4) Å Mn(2) = 3.27 +

 $\Delta = 19.4$

 $64 \ll Mn^{4+} \gg$ **80 « Mn³⁺ -like» 8 delocalised holes**

<Mn-O> = 1,915(4) Å Mn(5) = 3.90 + $\Delta = 6.1$

Distribution of Mn³⁺ and Mn⁴⁺ in the cell

