

Symmetry mode analysis in the Bilbao Crystallographic Server:

The program AMPLIMODES

http://www.cryst.ehu.es

Billeo Crystalographic Server

[The orystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]

[Space Groups][Layer Groups][Rod Groups][Frieze Groups][Wyckoff Sets][mirror site at IUCR]

Sections	Space Groups Ret	rieval Tools
Retrieval Tools	GENPOS	Generators and General Positions of Space Groups
Group-Subgroup	WYCKPOS	Wyckoff Positions of Space Groups
Representations	HKLCOND	Reflection conditions of Space Groups
Solid State	MAXSUB	Maximal Subgroups of Space Groups
Structure Utilities	SERIES	Series of Maximal isomorphic Subgroups of Space Groups
Subperiodic	WYCKSETS	Equivalent Sets of Wyckoff Positions
ICSDB	NORMALIZER	Normalizers of Space Groups
	KVEC	The k-vector types and Brillouin zones of Space Groups
Contact us		
About us	Group - Subgroup	Relations of Space Groups
.inks	energioup	Latites of Maximal Substance
Publications	SUDGROUPGRAP	Disidiation of subsecues is conjugated elesses
low to cite the server?	CORETR	Cos of decomposition for a group subgroup pair
	UUSEIS	The solition of the Wurker Desiliens
New programs and	MINELID	Minimal Supergroups of Space Croups
update8:	NINSUP	Minimal Supergroups of Space Groups
 AMPLIMODES 	SUPERGROUPS	Supergroups of space Groups
2-2008: Symmetry	CELLSUB	List of subgroups for a given k-index.
Modes Analysis of Structural Phase	CELLSUPER	List of supergroups for a given k-index.
Transitions.	COMMONSUBS	Common Subgroups or Space Groups
TRANDATH	COMMONSUPER	Common Supergroups of Two Space Groups
7-2007: Minor update		
and fixes.	Representation Th	eory Applications
SUPERGROUPS	REPRES	Space Groups Representations
6-2007: Added link to	DIRPRO	Direct Products of Space Group Irreducible Representations
Wyckoff Positions	CORREL	Correlations Between Representations
spitting.	POINT	Point Group Tables
 SERIES 	SITESYM	Site-symmetry induced representations of Space Groups
1-2007: New version of series of maximal		
isomorphic subgroups	Rolld Sizia Theory	Applications
for a given maximum index	Solid State Theory	Applications
INCER.	SAM	Spectral Active Modes (IR and RAMAN Selection Rules)
 SIMPLE 	NEUTRON	Neutron Scattering Selection Rules

Eitheo Crystallographic Server

for GENPOS,	PSEUDO	Pseudosymmetry Search in a Structure
and SERIES	DOPE	Degree of Pseudosymmetry Estimation
programs.	BPLOT	Pseudosymmetry Search with KPLOT
HERMANN	TRANPATH	Transition Paths (Group not subgroup relations)
1-2007: New version of		······································
program HERMANN.		
SETSTRU	Structure Utilities	
1-2007: CIF input data,	CELLTRAN	Transform Unit Cells
JMOL visualization and	STRAIN	Strain Tensor Calculation
minor bugs fixed	WPASSIGN	Assignment of Wyckoff Positions
WPASSIGN &	SETSTRU	Alternative Settings for a given Crystal Structure
EQUIVSTRU	EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure
1-2007: CIF input data and UNCL		
visualization		
	Subperiodic Group	os: Layer, Rod and Frieze Groups Retrieval Tools
TKANPATH 11-2005: New addops	GENPOS	Generators and General Positions of Subperiodic Groups
to program	WPOS	Wyckoff Positions of Subperiodic Groups
TRANPATH: Printable	MAXSUB	Maximal Subgroups of Subperiodic Groups
correction.		
	Databasas	
IKANPATH	Databases	
program TRANPATH.	ICSDB	Inconmensurate Crystal Structure Database
The calculation of		
between atoms is		
available.		
COMMONSUPER		
5-2006: New program		
for obtaining common		
supergroups of two space groups		
SETSTRU		
settings for a given		
crystal structure.		
WYCKPOS		
4-2006: Space Group		
ITA Settings available		
for WYCKPOS program.		
EQUIVSTRU		
derive systematically		
the equivalent		
crystallographic		
structure		
VSIS		

http://www.opsteines/() & 64(6783)/2008 1119.03

Modes in the statics of low-symmetry distorted phases:

Distorted Structure = High-symmetry Struct + "frozen" modes

distortion mode = Amplitude x polarization vector

AMPLIMODES calculates the amplitudes and polarization vectors of all distortion modes with different symmetries (irreps) frozen in a distorted structure.

We can compare the <u>amplitudes</u> of different frozen distortion modes:

 Q_1 and Q_2 have the same dimensions and their values can be compared

(Kwei et al. (1993) neutron-powder 190 K)

Mode decomposition of distortion:

Example of input of AMPLIMODES:

Amm2 phase of BaTiO₃

High symmetry structure Pm-3m 221 4.006 4.006 4.006 90 90 90 з вa la 1 0.0 0.0 0 ті ıb 1 0.5 0.5 0.5 3C 0.5 0.0 0.5 0 1 Low symmetry structure Amm2 38 3.9828 5.6745 5.6916 90 90 90 4 4 parameters 0.0 0.0 0.0 ва 1 2a ті 2b 1 0.5 0.0 0.5170 0 1 2a 0.0 0.0 0.4890 0 2 4e0.5 0.2561 0.2343 Transformation matrix Transf. 0] 1][ľ 0 1 -1 1] [[0 0] 01[ſ 1 0 0]

Example of output of AMPLIMODES:

Transformed high symmetry structure in the subgroup basis

038 4.00600 4	0 5.66	5339 5.60	65339 90.000000	90.000000 90.00	0000
ва	1	2a	0.000000	0.000000	0.000000
Ti	1	2b	0.500000	0.000000	0.500000
0	1	4e	0.500000	0.250000	0.250000
0	1 2	2a	0.000000	0.000000	0.500000

Atom pairings and distances

	Atom Mappings						
	WP	Atom	Coordinates in S ₁	Atom	Coordinates in S ₂		
2a	(0,0,z)	Ba1	(0,0,0)	Ba1	(0,0,0)		
2b	(1/2,0,z)	Ti1	(1/2,0,1/2)	Ti1	(1/2,0,0.51700)		
4e	(1/2,y,z)	01	(1/2,1/4,1/4)	02	(1/2,0.25610,0.23430)		
2a	(0,0,z)	01_2	(0,0,1/2)	01	(0,0,0.48900)		

WP			Atomic Distances			
		Atom	u _x	u _y	uz	[d]
2a	(0,0,z)	Ba1	0.0000	0.0000	0.0000	0.0000
2b	(1/2,0,z)	Ti1	0.0000	0.0000	0.0170	0.0963
4e	(1/2,y,z)	01	0.0000	0.0061	-0.0157	0.0954
2a	(0,0,z)	01_2	0.0000	0.0000	-0.0110	0.0623

NOTE: d_x , d_y and d_z are given in relative units. |d| is the absolute distance given in Å Maximum atomic displacement in the distortion, Δ : 0.0963 Å Total distortion amplitude: 0.1771 Å

After origin shift

Relative origin shift to eliminate a global displacement: (0.00000, 0.00000, -0.00508)

	Atom Mappings						
	WP	Atom	Coordinates in S ₁	Atom	Coordinates in S ₂		
2a	(0,0,z)	Ba1	(0,0,0)	Ba1	(0,0,0.00508)		
2b	(1/2,0,z)	Ti1	(1/2,0,1/2)	Ti1	(1/2,0,0.52208)		
4e	(1/2,y,z)	01	(1/2,1/4,1/4)	02	(1/2,0.25610,0.23938)		
2a	(0,0,z)	01_2	(0,0,1/2)	01	(0,0,0.49408)		

			Atomic Distances				
	WP	Atom	u _x	u _y	uz	d	
2a	(0,0,z)	Ba1	0.0000	0.0000	0.0051	0.0288	
2b	(1/2,0,z)	Ti1	0.0000	0.0000	0.0221	0.1251	
4e	(1/2,y,z)	01	0.0000	0.0061	-0.0106	0.0694	
2a	(0,0,z)	01_2	0.0000	0.0000	-0.0059	0.0335	

NOTE: d_{x} , d_{y} and d_{z} are given in relative units. |d| is the absolute distance given in Å Maximum atomic displacement in the distortion, Δ : 0.1251 Å Total distortion amplitude: 0.1650 Å

Symmetry Modes Summary

Atoms	WP	Modes
01	3c	GM4-(2) GM5-(1)
Ti1	1 <i>b</i>	GM4-(1)
Ba1	1a	GM4-(1)

Note: The primary mode is written in bold letters

Summary of Amplitudes

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	GM4-	(a,a,0)	Amm2 (38)	4	0.1649
(0,0,0)	GM5-	(0,a,-a)	Amm2 (38)	1	0.0056

Global distortion: 0.1650 Å

Example of output of AMPLIMODES:

Normalized Symmetry modes

The modes are normalized to the low symmetry unit cell and are given as relative displacements in this cell.

δz

δz

Irrep GM4-

Atom

GM4- Mode Ba1 1

δx

K-vector: GM = (0.0.0)

Atom δx

GM4- Mode Ti1 1

δy

δy

Ba1 0.000000 0.000000 0.176512

GM4- Mode O1 1

Atom	δx	δy	δz
01	0.000000	0.062406	0.062406
01_2	0.000000	0.000000	0.124813

GM4- Mode O1 2

Atom	δx	δy	δz
01	0.000000	-0.088256	0.088256
01_2	0.000000	0.000000	0.000000

Irrep GM5-

GM5- Mode O1 1

Atom	δx	δχ δγ	
01	0.000000	-0.062406	-0.062406
01_2	0.000000	0.000000	0.124813

Virtual structure) with only this symmetry component of the distortion frozen.

(Kwei et al. (1993) neutron-powder 190 K)

	δχ	δy	δz
Ba1	0.0	0.0	0.0
Ti1	0.5	0.0	0.5
01	0.5	0.25	0.25
012	0.0	0.0	0.5

polarization vector GM4-

+ **Q**_{GM4-}

polarization vector GM5-

+

		δx	δy	δz
	Ba1	0.0	0.0000	0.0000
-	Ti1	0.0	0.0000	0.0000
	01	0.0	0.0624	0.0624
	012	0.0	0.0000	-0.1248

Q_{GM4-}= 0.165 Å

(Kwei et al. (1993) neutron-powder 190 K)

Orthorhombic Distortion

 $Q_{T111} >> Q_{T211}$

Symmetry T_{1u} : $\delta y_{01} + \delta z_{01} - \delta z_{012} = 0$

zero global translation :

$$2\delta z_{Ba1} + 2\delta z_{Ti11} + 4\delta z_{O12} + 2\delta z_{O12} = 0$$

normalization

3 parameters

110 120

Symmetry **T**_{1u} :

normalization

1 parameter

 $\delta y_{O1} = \delta z_{O1}$

 $\delta y_{01} + \delta z_{01} + \delta z_{012} = 0$

DISTORTION AMPLITUDES VS. TEMPERATURE:

Sequence of transitions in SrZrO₃

PrNiO₃

P2₁/n11(P2₁/c) instead of Pnma ?

Medarde et al. PRL (2007)

Amplitudes	5	SrZrO3	PrNiO3
R4+	(Imma)	1.19	1.09
M3+	(P4/mbm)	0.79	0.69
X5+	(Cmcm)	0.34	0.36
R5+		0.07 (Imma)	0.06 (C2/m)
M2+	(P4/mbm)	0.01	0.00
R1+ ??	(Fm-3m)	-	0.09
R3+	(I4/mmm)	-	0.01
M5+	(Pmna)	-	0.00

$\begin{array}{c} I4_1/a \quad \mbox{Palmer et. (Amer. Miner. 82 (1997) 16} \\ \mbox{Leucite} \end{array}$

KAlSi₂O₆

Polymorphism: nephelines $Na_{8-r}Al_{8-r}Si_{8+r}O_4$ ($r \approx 0$)

Virtual arystotype: P6₃mc

Ampl. (Å)Dim.GM2 (P63):0.091M1(P63mc,2x2x1):0.3913M2(P63,2x2x1):2.898

(max. atomic displ. : 1.34Å)

Mode decomposition vs. ab-initio calculations

SrAl₂O₄

$$P6_322 \longrightarrow P2_1$$

(Larsson et al. 2008)

two different displacive instabilities:

Comparison of mode decomposition of experimental and ab-initio structures

Amplitudes and dot products of polarization vectors :										
irrep	M ₂ -1	q	Γ ₆		M ₃ -1q		Γ ₅		Γ_4	
dim.	12		7 11			7		3		
	Amp.	prod.	Amp.	prod.	Amp.	prod.	Amp.	prod.	Amp.	prod.
Exp. Struct.	1.70		1.39		0.57		0.32		0.02	
ab-initio	1.81	0.998	1.35	0.9997	0.57	0.997	0.24	0.96	0.03	0.63

Amplitudes and det products of polarization vectors :

Mode decomposition in "collapse" high pressure phase transitions

Mode decomposition in "collapse" high pressure phase transitions

Lillianite: Pb₃Bi₂S₆

Mode decomposition of High-pressure phase: Active irrep distortion but also large fully symmetric distortion

Fully symmetric distortion: irrep GM1

symmetry breaking distortion: active irrep Y2-

Symmetry-mode coordinates in the structure refinement, instead of the individual atomic coordinates:

One expects:

- a natural hierarchy of parameters
- less correlations with atomic (thermal) displacement parameters
- better control of the refinement

Example of PCR file for **FullProf** corresponding to the compound LaMnO₃

! Polarisa	ation Vector:	s of Symmetr	y Modes fo	or each	atom			
V_MODES	12 Symbols of the Irreducible representations							
! Nm Atm	Irrep	Vx	Vy	Vz		Coeff		
1 01	R4+	0.00000	0.00000	0.031	721	1.000000		
1 02	R4+	0.063442	0.00000	0.000	000	1.000000		
2 La	R5+	-0.089721	0.00000	0.000	000	1.000000		
3 01	R5+	0.000000	0.000000	-0.031	721	1.000000		
		Polarisation	vectors co	ompone	nts			
7 02	M3+	0.00000	0.00000	0.000	000	1.000000		
! Amplitud	les of Symme	try Modes 🛶	——Kevw	vord. # c	of modes	output for FST		
A_MODES	7 11	1 1 1 1 1		,		,		
Q1_R4+	-1.1896	80 181.0000						
Q2_R5+	-0.0864	67 191.0000)					
Q3 R5+	0.0181	71 201.0000						
Q4 X5+	-0.5460	B2 211.00 <u>00</u>	<u>N</u> ames	s of amp	litudes, v	values and		
Q5_X5+	-0.1399	10 221.0000	refiner	nent co	des (allov	wing constraints		
Q6_M2+	0.3556	52 231.0000			•	-		
Q7_M3+	0.9012	64 241.0000						
!>	Profile Para	ameters for	Pattern #	1				
! Scale	Shape	1 Bov	Str1	Str2	Str3	Strain-Model		
0.86919E-	-01 0.0000	0.00000	0.0000	0.0000	0.0000	0		

Example of direct refinement of mode amplitudes with FullProf:

Symmetry Mode amplitudes have very different amplitudes and their standard deviations may differ in orders of magnitude

Other programs:

Journal of Applied Crystallography

ISSN 0021-8898

Received 10 February 2006 Accepted 18 April 2006

ISODISPLACE: a web-based tool for exploring structural distortions

Branton J. Campbell,* Harold T. Stokes, David E. Tanner and Dorian M. Hatch

Brigham Young University, Department of Physics and Astronomy, USA. Correspondence e-mail: branton_campbell@byu.edu

http://stokes.byu.edu/isodisplace.html