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- Magnetic ordering is a symmetry break process
« We talk of a “distorted structure” and a “distortion”.

« The paramagnetic structure is the “parent” structure and it has a
higher symmetry: group-subgroup relation. (magnetic groups)

 Lost symmetry operations transform the distorted structure into
something different:

a distorted structure with a different distortion.
* Relation with the original distortion?:
*Through a REPRESENTATION of the symmetry group of the

paramagnetic phase: A matrix for each operation describes the
corresponding transformation of the distortion.



The Magnetic Representation: an arbitrary spin arrangement
transforms according to a representation of the parent symmetry group

/\ _»gi_>

/ Q =Q
o\
6=Q1a>1+"'+Qan 6‘= Q’1(T1>-|-"'-|-Q’ nan
= =
representation T(g)Q= Q
of G
(matrices) T(g) : one nxn matrix for each operation g of G
—

{d1,.:’.,dn} orthonormal basis of spin modes



Representation based modeling of magnetic structures

Possible spin arrangements for a magnetic structure
having space group Pnma in the paramagnetic phase and a
magnetic ordering with propagation vector k=(1/2,0,0)?

@ HoMnO,

k=(1/2,0,0)
Mn at WP 4b

?

Magnetic representation: dim 4x3=12. Reducible in general

Decomposition
M,oo= 3 MX1(2) ® 3 mX2(2 —ecomp
\ /, Into Irreps
IIrEPS (the m in the irrep label means “odd” for time reversal)




MAGNETIC REP: Decomposition of the magnetic representation
into irreps.
(for some input wave vector(s) and chosen Wvckoff positions)

Wave-vectors of the star (1 vector):

X:(1/2,0,0)

Wyckoff
position
4b:(0,0,1/2) |3 mX1(2) @ 3 mX2(2)
In parentheses the dimensions of the irreducible representations of the little group of k

Decomposition into irreps

CDML notation for the irrep labels: the corresponding irreps are
listed in the Bilbao Crystallographic Server and in the ISOTROPY
webpage




Representation based modeling of magnetic structures

Possible spin arrangements for a magnetic structure
having space group Pnma in the paramagnetic phase and a
magnetic ordering with propagation vector k=(1/2,0,0)?

@ HoMnO,

k=(1/2,0,0)
Mn at WP 4b

?

Magnetic representation: dim 4x3=12. Reducible in general
6-dim 6-dim
y 72 n

into irreps
"\ Arreps




LANDAU Theory: If transition continuous , then T(g) must
be an IRREDUCIBLE representation (irrep) of G

\ |
& gl —
/ N\ Q —=Q
-~
o\
Q=Q.d+...+Qd, Q=Q d+..+Q d,
T@a=Q

{T(g)} : IRREDUCIBLE REPRESENTATION (irrep)

Q= (Q4,Q,,...,Q,) -> Order Parameter of the transition

Even if the transition is not continuous, in most cases
T(g) is also IRREDUCIBLE, and in the most complex
cases only involves a few irreps




Distortions transforming according to representations of
the symmetry group of the undistorted structure

Simplest example: some lost operations keep it invariant, some
change its sign (1-dim irrep)
Distortion in the structure

g; belongs
to the
symmetry

group G of the
parent structure

Distortion after application of g,

“ \ — gi s ~
—> —>
d, < -d,
i
—
Q —_ Q1_d>1 6£= Q,—:d1
—_
: T(g|) Q = Q T(gl) — _1
representation \ r
of G (irrep) PRI
(matrices) \> X1 matrices

T(9,)T(9,) = T(9,9,)




Distortions transforming according to representations of
the symmetry group of the undistorted structure

more complex example: some operations transform the distortion
into another independent one, or in a linear combination with it

Distortion in the structure Distortion after application of g,

g9 —

- d,

< d.

g 2

6= _»i 7 7
. Q'=Q 1?1:+Q 232. .
representation 0 1
fG (i - = _

(matticos) T(g) Q= Q T@)=|1 o

T(94)T(g9,) = T(9,49,) 2-dim irrep




Even if the transition is not continuous, in most cases
T(g) is also IRREDUCIBLE, and in the most complex
cases only involves a few irreps

This is the basis for the REPRESENTATION METHOD

Possible irreps: can be determined mathematically and they are
quite limited both in their number and in their dimension.

The determination of the basis of spin modes for each irrep:
also a mathematical problem.



Representation analysis was taken as a “superior” alternative
to magnetic symmetry groups, and it included incommensurate cases

Acta Cryst. (1968). A24, 217
Representation Analysis of Magnetic Structures

By E.F.BERTAUT

A2
L 4

Abstract:

In the analysis of spin structures a ‘natural’ point of view looks for the set of symmetry operations
which leave the magnetic structure invariant and has led to the development of magnetic or Shubnikov
groups. A second point of view presented here simply asks for the transformation properties of a
magnetic structure under the classical symmetry operations of the 230 conventional space groups and
allows one to assign irreducible representations of the actual space group to all known magnetic.
structures. The superiority of representation theory over symmetry invariance under Shubnikov gliouh)_s
is already demonstrated by the fact proven here that the only invariant magnetic structures describable
by magnetic groups belong to real one-dimensional representations of the 230 space groups. Representa-
tion theory on the other hand is richer because the number of representations is infinite, i.e. it can deal
not only with magnetic structures belonging to one-dimensional real representations, but also with

those belonging to one-dimensional complex and even to two-dimensional and three-dimensional
representations associated with any k vector in jor on the first Brillouin zone.

rirrac M

A ONMINe a ranmracantatiAan Mt fha nmnnn mandies

It includes incommensurate magnetic structures...

Appropriate SOFTWARE for the calculations were soon developed...



Appropriate SOFTWARE for REPRESENTATION ANALYSIS
were soon developed...

File Run Results Help Exit

=5[]

DleR@| «[8] 2w x|

Baslireps (version: July-2003, JRC-LLB)
Irreducible representations of Space Groups
Basis functions of pofar and axial vector properties

Code of files:

Working Directory: I Browse... I
Title: I
Spacelroup [HM%II symbols) I
or generators separated by ;"
| KVector | I | | Brillouin Zone Label:
& Polar Vector " Ayial Vector

Number of Atoms: 0 E ™ Explicit Sublattices [~ Atoms in unit cell

Symbol w/a yla 2/a >

Atomn #1
Atom #2
Atom #3 Ll

[

[ |

Basirreps from J. Rodriguez-Carvajal

SARAhA Representational Analysis -

Performs the calculations of Representational Analysis. These allow the
determination of atomic displacements or magnetic structures that can
accompany a second-order phase transition. Output files includes a
tailored summary with cut-and-paste tables written in LaTeX. (Win9x,
2000, Vista and Windows 7) [1]

Sarah from A.S. Wills

The representation method became the most used method of
analysis, most magnetic structures were determined and reported
without the assignment of a space (or superspace) group symmetry,

not even point-group symmetry.




What is the problem of using “only” irreps?

Commensurate magnetic structures:

Representation ]

Analysis ¢ " > Magnetic Symmetry
(irreducible representations, (Shubnikov groups, ...)
basis functions...)

Identifying the active irrep(s) or the MSG are not
alternative equivalent methods:

In the case of N-dim irreps several MSGs are
in general possible for the same irrep

Only in the case of 1-dim irreps there is a one to one relation



Symmetry based modeling of magnetic structures

ALL possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

obtained with

Pnmal’
k-SUBGROUPSMAG
P21 /m P:2 /e Pymn2,q P,na2,
o 3
Pq1 P,2; P,m P.c P,2; Pyc
. Pql
exp(i2rk.a) = -1 °

(magnetic cell= (2a,,b,,c,))



Symmetry based modeling in magnetic structures

Possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

BUT only those that can be the result of a Landau-type transition
(single irrep order parameter)

obtained with
k-SUBGROUPSMAG:
\

Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order
parameter).




K-SUBGROUPSMAG output:

List of subgroups that can be the result of a Landau-type transition

Get the subgroup-graph

Group-Subgroup

Other members of

Magnetic structure models

Group Symbol Transformation matrix index the Conjugacy Class irreps (MAGMODELIZE)
2 0 0 -1/4 . .
Pzna24 (No. 33.149) g (1) (1) g ) 4=2x2 Conjugacy Class Get irreps N
——
0 -2 0 -1/4 ' |
2 Ppmn24 (No. 31.129) (1) g (1) l/g ) 4=2x2 Conjugacy Get irreps
—
0 0 2 0 . ‘
3| Pc24/c (No. 14.82) ( _‘1’ (1) 8 g ) 4=2x2 Conjugacy Class Get irreps
2 0 0 1/2 . ‘
4| Pz24/m (No. 11.55) ( g é 2 g ) 4=2x2 Conjugacy Cl Get irreps
0 0 2 0 . .
5 Pcc (No. 7.28) ( _2 (1) 8 1/3 ) 8=2x4 Conjuggfy Class Get irreps B
2 0 0 0 _ .
6 Pom (No. 6.21) ( g (1) (1) 1/3 ) 8=2x4 njugacy Class Get irreps

Link to Get_mirreps




Get_mirreps: Irreps that are compatible with a given magnetic
phase transition

Input: SG of the paramagnetic phase + MSG of the
magnetic phase and their relation

| Group—subgroup | Transformation matrix
0 -2 0 -1/4
for P,mn2; Pnmat’ (N. 62.442)—Pymn2 (N.31.129)( 1 0 o 1/4)
o o 1 0

Representations and order parameters

. . Show the graph of isotropy subgroups
primary irrep

k-%ectors iirreps and order parameters Isotropy sybgroup. link to the irreps
transformation matrix
+. Pnma1' (No. 62.442)
GM: (0,0,0) N ab,¢,0.0.0 tices of the i
. \L,U, , matrices of the irreps
\GMQ': (@) Pmn241' (No. 31.124)
D4yl 0
X: (1/2,0,0) mX1: (a,a) ’ matrices of the irreps




Get_mirreps: Irreps that are compatible with a given magnetic

phase transition
Input data

| Group—subgroup | Transformation matrix

2 0 0 0
Pnma1' (N. 62.442)—-P_m (N. 6.21) ( 0 1 0 1/4)
0 0

for P.m .
a Representations and order parameters
Show the graph of isotropy subgroups
k-vectors |irreps and order parameters tr;snostfr:rpr:ast?obng:::t‘:ix link to the irreps
i i Pnma1' (No. 62.442
primary |rrep\ GM1*: (a) ! b(C'O 2 )
P24/m1' (No. 11.51
GM4™: (2) Vb c(:'O 0,0 )
p 2 ,1‘,(’:1 ! :’31 124) matrices of the irreps
- mn24 0. 31.
GM;” (a) b,-a,c;1/4,1/4,0
Pmc241' (No. 26.67
GMj3™: (a) 11 " )
X: (1/2,0,0) mXj: (a,b) F;aamb((lzlg16/42 matrices of the irreps




Phase Transition / Symmetry break / Order Parameter

group-subgroup relation:

High symmetry group G =
gh sy 'yg P {g} G == | |F:isotropy subgroup
T(g) 6’: 3 High symmetry | ow symmetry
: For special
Irreducible | / lr directions of
representation g belongs to F i . F of higher
of G (irrep) \ ___________ | symmetry:
(matnces) E == = 0. \\\ epikernels
T(9) Q= Q #Q {| For general
! Q20 direction of
i _ ,,/,? Q, the lowest
g does not belong to F: Q" equivalent |- F: kernel
but distinguishable state (domain)
= '6‘5 OQ 0:5 : amplitude
1

<«—Order parameter Q= (Q,,Q,) = p (a4,a,)
a,%+a,? =1

Key concept of a symmetry break




Possible Magnetic Space Groups (MSGs) for a single irrep:

epikernels
of the irrep,
isotropy subgroups: depending on
the direction
Invariance equation: (a,a,...) ,(a,0,...),
. — etc...
a a R,0|t} is
T[{R,elt}] b = b % Eonselrved

by the magnetic . _
arrangement kernel of the irrep:

—- —- operations
represented

by the unit matrix.
MSG kept by any

direction (a,b,...)

nxn matrix of irrep

Example: g: ={R,9|t}

0 1 :
— al _ |a g; will belong to the
H@)=11 o| Tea) a] B U > MSG if OP=(a,a)




Similar to structural phase

. . transitions: the same irrep can
The different phases of BaTiO, produce
different symmetries

Pm-3m P4mm

Polar distortion according to the
3-dim irrep GM4-:
3-dim order parameter (OP):

different symmetries depending
R3nf2(113,113,113) o the direction of the OP:

Tetragonal

Q(12,12,0)

Orthorhombic Rhombohedral

Irrep GM4-

T=-71°C T=8°C T=125°C

0'5 L) LOR | L L) L 1 L L L) L ) I N
] R3m )I\mm2: P4mm 1 : :
t\_l,\ 04- \ I l_ BaTIO3-R BaTIOS-T
g [ [ [
2 1 Rhombohedral e i
% 0.3- phase | | 5
k=) ' [ I
'§ 0.2- Orthorhombic il
= ] phase i
=] I I |
&~ 0.1 | Tetragonali-
| I | .
| | phase 1 Pb(ZF,TI)Og
O 1

.250-200-150-100 -50 O 50 100 \ /

Temperature 7 (°C)
Li et al. J. Appl. Phys. (2005)




k-SUBGROUPSMAG determine the epikernels and kernel of any irrep

“and produce magnetic structural models complying with them.
| k-Subgroupsmag: Magnetic subgroups compatible with some given propagation vector(s) or

The program k-Subgroupsmag provides the
possible magnetic subgroups of the space
group of a paramagnetic phase (gray group)
which are possible for a magnetic ordering
having a known propagation vector. The
program provides the set of magnetic
subgroups or a graph showing the
subgroup-tree (grouped into conjugacy
classes). In both cases, more information
about the classes or subgroups can be
obtained.

Other alternatives for the input of the program:

¢ An alternative parent (non gray) magnetic
group can be chosen.

¢ Instead of the whole set of subgroups, the
output can be limited to subgroups having a
chosen common subgroup of lowest
symmetry, common point group of lowest
symmetry, or groups which belong to a specific
crystal class.

o Further restrictions on the subgroup list/graph
considering physical properties can be used: it
is possible to ask for only centrosymmetric or
non-centrosymmetri groups, polar or non-polar
groups.

¢ More than one propagation wave-vector can
be chosen.

e The whole (or partial) stars of vectors can be
introduced.

¢ Non magnetic modulation wave-vectors can be

also introduced.
e _Inctead nf nronnanatinn wave-vectare a

a supercell.

Enter the serial number of the space group of the parent choose it
paramagnetic phase: 136

Choose an alternative magnetic group
Alternatively give the operations of the space group in a non-standard setting

Introduce the magnetic wave vector(s)
Alternatively give the basis vectors of the supercell
(Give the components of the wave vectors in a fractional form, n/m)
k1x 0 k1y 0 k1z 0
Show the independent vectors of the star
Choose the whole star of the propagation vector o n Iy

More wave-vectors needed

Optionally give also non-magnetic modulation wave-vectors

Include the subgroups compatible with intermediate cells.
(It is not applied when only the maximal subgroups are calculated)

Optional: refine further the subgroups of the output giving the Wyckoff positions of
atoms

Give the Wyckoff positions

Optional: refine further the subgroups of t giving a set of irreps

Choose the irreps Representations

- commensurate

filter

by
irreps



Possible MSGs for a magnetic structure with space group Pnma,
with propagation vector k=(1/2,0,0), and a magnetic ordering

according to the irrep mX1.

Pnmal’

3 parameters

Pbmn21

HoMnO,

P.m

possible competing
phase in the phase diagram

3 parameters

Pa21/m

6 parameters

M,ep= 3 ‘r(nX1(2) & 3 mX2(2)

6 basis spin modes: 6 parameters




Symmetry based modeling in magnetic structures

Possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

BUT only those that can be the result of a Landau-type transition
(single irrep order parameter)

case 1: The MSG of structure is only
compatible with with a single irrep.

@ 3-parameters

obtained with
k-SUBGROUPSMAG

2-dim irrep mX2 (k=(1/2,0,0)) 2-dim irrep mX1 (k=(1/2,0,0))
-~ ~~ b - = x\\

I, }\ ' \\

| |I 1 HoMnO\ 1

\ \ Il Il

\ \

\\ ,‘l\ /’

N Pe I Ny P.m 6-pa[9meters
\~~~- ——”’/ \~~~- ——”I
- 6-dim 6-dim "

¥ ¥
M,e,= 3 MX1(2) © 3 mX2(2)



L

—

magnetic space group:

HoMnO, (Magndata #1.20)

parent space group: Pnma, k=(1/2,0,0)

transformation from parent structure: (2a,b,c;0,0,0)

BNS magnetic space group: Pbmn2, (#29.1 04) (non-standard)
Transformation to standard setting: (-b,a,c;1/8,1/4,0)

k-maximal symmetry

-x+3/4,-y,z+1/2,-1

{2001 ]3/401/2}

x+1/2,-y+1/2,z,-1

{mo10]1/21/20}

-x+3/4,y+1/2,z+1/2,-1

N (x,y,2) Seitz notation

1 X,Y,2,+1 {110}

2| -x+1/4,-y,z+1/2,+1 {2001]1/401/2}
3 X,-y+1/2,z,+1 {mg10]01/20}
4 |-x+1/4,y+1/2,z+1/2,+* | { Moo | 1/4 1/2 1/2}
5 x+1/2,y,z,-1 {1'11/200}

6

7

8

{ m'100 | 3/4 1/2 1/2}

Label |Atom type X y z Multiplicity | Symmetry constraints on M| My |My Mz | |M|
Mn Mn 0.00000/0.00000|0.50000 8 My, My, Mz 3.87|0.0|0.0|3.87
NOT symmetry forced

2-dim irrep mX1 but restricted to a special

direction:

fixed combination of each pair of spin basis

functions => half number of degrees of
freedom with respect to the only restriction to

the irrep

Does the identification of the irrep bring some additional knowledge or

restriction? ...NO
(case 1: The MSG of structure is only compatible with with a single irrep)




Only for 1-dim (full) irreps there is a one to one correspondence
between a MSG and the irrep

Possible MSGs for magnetic ordering with propagation vector (0,0,1/2) on
a structure with space group P2,/m:

k=(0 0 %)
P2,/m1’
mB2* mB1 B2 mB1~*
P.2)/c P.2,/c P,2,/m P,2,/m
I’(-(T 1,021 Ps‘i p\“i 1,02] l,u"‘

Psl




Another example irreps vs MSG with some more complications:

Mn,Sn
k=(0,0,0)

P6ymmc1’ > 7?7

Mn Wyckoff position: 6h (x,2x,1/4)



Mn,Sn
k=(0,0,0)

P6ymmc1’ 5> 77

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6;/mmc

Only those that can be the result of a Landau-type transition (single irrep order parameter):

Cm'em Cmdm Cm'em/! Cmdm/ Cm'c'm’ Cmem/ Cm/dm Cmem

NS NS N/ N/

P2)/m P2 /m/ P2, /m/ P2,/m




Mn,Sn
k=(0,0,0)

P6ymmc1’ 5> 77

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6;/mmc

Only those that can be the result of a Landau-type transition (single irrep order parameter):

order parameter irrep (CDML notation): @

mGM3- mE mGVI4+ GM2+ mGM1+
mGM5+
mGM6- mGM6+ MGMS5- ————
- y - y & ~N
PA P "V N\ [ “
,, Cm'cm Cmd'm \\ ,<' Cm/em/ Cmdm’ \\ ,Jm' 'm/ Cmem/ ~'\ /’ Cm'dm Cmem ‘\
/ \ Y \
[ \ / 1 A \ / ]
]

\ / /
\\ P2\ /m L P2, /m /l
~ »7

~ ~~-——_—‘

~
~.-—_—’

not k-maximal but possible as the result of a single active irrep



Mn,Sn
k=(0,0,0)

P6ymmc1’ 5> 77

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6;/mmc

Only those that can be the result of a Landau-type transition (single irrep order parameter):

order parameter irrep (CDML notation): @ m = (0,0,0) at 6h (x,2x,1/4)

S 4
mGM3- MGV !!‘ L M1- mGHN GM2+ mGM1+

ons— o
Crumi G 3™ (i) G (ople) (o Crntmme) Crmione

mGM6- mGM6+ G- mGM>5+
o TNy o Ty ‘: I - 'A’ - -~ \.‘
s Y 4 - ~ ‘ 9
/' Cm/em Cmcém |'S ¢ Cm'em/ N ,Jm'c’m’ Cmem/ ~'\ /’ Cm'dm Cmem ~\
V4 \N 7/ \ / 1
4 \Y4 \ / b 1
' \ / \ / | \ / ‘ \ / !
\ / /\ /
\\ P2 /m / \\ P2)/m/ 7 N\ P2, /m/ /' P2,/m //
~ -7 ~ g o -’ Il ——

~
-~ _—’ ~
-— ~~——_—’



Mn3sn 2-dim irrep mGM6+

k=(0,0,0) ,
Cmc’m’ (-b, 2a+b, c; 0,0,0)
P6y/mmc1’ > or

Cm’cm’ (-b, 2a+b, c; 0,0,0)

order parameter irrep (CDML notation): @

mGM3- .'“;M hEM1- mGM GM2+ mGM1+

Crumid G () (o (opled (o) Crntmme) Crmiene

mGM5+
- ! _ — — - - - 'A’ ~.‘
4 s - ~ ‘ 9
/' Cm'em Cmcém |'S Cm/em/ Cmdm/ b ,Jm'c’ m/ Cmem/ ~'\ /’ Cm'dm Cmem ~\
V4 \ / 1
N/ NS TN LN )
\ / /\ /
\\ P2 /m / \\ P2)/m/ 7 N\ P2, /m/ /' P2,/m //
s s ~ -’ S AN -7
~ -7 ~ - o -’ Il ——

~ ~
‘h-———’ ~-——-——'

~
~.—__—’

Mn,;Sn



Mn;Sn k=(0,0,0)

Number of free parameters for the
mGM6+ ordering, depending on the
constraint to one of the possible
MSGs

2 parameters

2-dim irrep mGM6+
4 basis functions/vectors

2 parameters

I P2} /m/ 4 parameters
Wave-vectors of the star (1 vector):

GM:(0,0,0)

Descomposition of the magnetic representation(s) into irreps.

6h:(x,2*x,1/4) — 1xmGM1-(1) @ 1xmGM2+(1) @ 1xmGM2-(1) @ 1xmGM3+(1) @

@® 1xmGM3-(1) ® 1xmGM4+(1) ® 1xmGM5+(2) ® 2xmGM5-(2 ; 1xmGM6-(2)



Mn;Sn k=(0,0,0)

2-dim irrep mGM6+
Number of free parameters for the

mGM6+ ordering, depending on the
constraint to one of the possible

4 basis functions/vectors
(4 parameters)

MSGs 2 parameters

2 parameters 2 parameters m

aﬁ b P2 /m/ 4 parameters

1 parameter

Wave-vectors of the star (1 vector):

GM:(0,0,0)
Descomposition of the magnetic representation(s) into irreps.
6h:(x,2*x,1/4) — 1xmGM1-(1) @ 1xmGM2+(1) @ 1xmGM2-(1) @ 1xmGM3+(1) @

@® 1xmGM3-(1) ® 1xmGM4+(1) ® 1xmGM5+(2) ® 2xmGM5-(2 ; 1xmGM6-(2)



Mn,Sn (MAGNDATA #0.199)

P6y/mmc1’ > Cmc’m’ (-b, 2a+b, c; 0,0,0)
_space_group_magn.transform_BNS_Pp_abc '-b,2a+b,c;0,0,0’ loop_
_space_group_magn.number BNS 63.463 _atom_site_label
_space_group_magn.name_BNS "Cmc'm"™ _atom_site_type symbol
_cell_length_a 5.66500 atom site fract x
_cell_length_b 5.66500 - t - it _f t_

“cell_length_c 4.53100 _atom_site_fract_y

_cell_angle_alpha 90.00 _atom_site_fract_z

_cell_angle_beta 90.00 Mn1_1 Mn 0.83880 0.67760 0.25000
_cell_angle_ gamma 120.00 Mn1_2 Mn 0.32240 0.16120 0.25000
I Sn1 Sn 0.333333 0.666667 0.25000
0oop_

_space_group_symop_magn_operation.id

_Space_group_symop_magn_operation.xyz IOOp— )

1x,y,2,+1 _atom_site_moment.label

2 -X,-X+Yy,-Z,+1 _atom_site_moment.crystalaxis_x
3 -X,-y,~Z,+1 _atom_site_moment.crystalaxis_y
4 X,x-y,2,+1 _atom_site_moment.crystalaxis_z

5 x,X-y,-z+1/2,-1
6 -X,-y,z+1/2,-1
7 -X,-x+y,z+1/2,-1

_atom_site_moment.symmform
Mn1_1 3.00(1) 3.00 0.00000 mx,my,0

8 xy,-z+1/2,-1 Mn1_2 0.00000 -3.00 0.00000 0,my,0
loop__ /
_space_group_symop_magn_centering.id

_space_group_symop_magn_centering.xyz 3 free parameters

1x,y,2,+1



k=(0,0,0) 2-dim irrep mGM6+

P6ymmc1’ > Cmc’m’ (-b, 2a+b, c; 0,0,0)

2-dim irrep mGM6+

4 basis functions/vectors

2 parameters 2 parameters

P2} /m/ 4 parameters

Why 3 free parameters when described using the MSG Cmc’m’ instead of 2 parameters?



Mn,Sn
k=(0,0,0)

P6ymmc1’ 5> 77

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6;/mmc (LANDAU)

N

\
1
I not k-maximal symmetry

4
N P2 /m/ ,/
“ ’
\N >
~-——_—‘

Deséompbsition of the magnetic representation(s) into irreps.
6h:(x,2*x,1/4) — 1xmGM1-(1) @ 1xmGM2+(1) @ 1xmGM2-(1) K

@® 1xmGM3-(1) ® 1xmGM4+(1) ® 1xmGM5+(2) ® 2xmGM5-(2) ® @) 1xmGM6-(2)



Case 2: the MSG of the M

structure is compatible
with more than one irrep 1-dim irrep mGM3+

Cmcm' | 2-dim irrep mGMG6+

Von Neumann principle:

Everything that keeps the symmetry Cmc’m’ is allowed and can happen...

Anything that keeps the symmetry P6’;/m’mc’ keeps the symmetry of its subgroup Cmc’m’
THEREFORE.... a spin arrangement according to the irrep mGM3+ is also allowed in the
structure with MSG Cmc’m’



Mn,Sn (MAGNDATA #0.199)

P6y/mmc1’

_space_group_magn.transform_BNS_ Pp_abc '-b,2a+b,c;0,0,0’
_space_group_magn.number_BNS 63.463
_space_group_magn.name_BNS "Cmc'm

_cell_length_a 5.66500
_cell_length_b 5.66500
_cell_length_c 4.53100
_cell_angle_alpha 90.00
_cell_angle_beta 90.00

_cell_angle_gamma 120.00

loop
_space_group_symop_magn_operation.id
space_group_symop_magn_operation.xyz

> Cmc’m’ (-b, 2a+b, c; 0,0,0)

loop

_atom_site_label

_atom_site_type symbol
_atom_site_fract x
_atom_site fract vy

_atom_site fract z

Mn1_1 Mn 0.83880 0.67760 0.25000
Mn1_ 2 Mn 0.32240 0.16120 0.25000
Sn1 Sn 0.333333 0.666667 0.25000

loop

_atom_site_ moment.label
_atom_site_moment.crystalaxis_x
_atom_site_moment.crystalaxis_y
_atom_site_moment.crystalaxis_z

1 X,y,Z,+1

2 X,-X+Y,-Z,+1 2 parameters if the mGM3+ component
3 -X,-y,-Z,+1 is set to zero. Only one parameter

4 X,x-y,z,+1 because in addition, the two moment

5 X,x-y,-z+1/2,-1 magnitudes are forced to be equal.

6 -X,-y,z+1/2,-1 —
7 -X,-x+y,z+1/2,-1

8 x,y,-z+1/2,-1

loop__

_space_group_symop_magn_centering.id
_Space_group_symop_magn_centering.xyz
1x,y,2,+1

_atom_site_moment.symmform

W) 3.00 0.00000 mx,my,0
Mn1_2 0.00000 -3.00 0.00000 0,my,0

3 parameters because in

addition to the constrained mGM6+
arrangement, also a mGM3+ component

is also physically possible in the same phase




Another example of k-SUBGROUPSMAG with an irrep filter: (Tutorial 2)

Possible magnetic symmetries for a magnetic phase with

parent space group P-3m1, propagation vector (1/3,1/3,1/2) and

magnetic atom at 1b (0,0,1/2)

dim
small irrep

Magn_rep (1b)= 1mH1(1)+1mH3(2)

: (dim: 6)
P3m1l’

(k, -k not equivalent)

Restricted to the
FULL (k,-k) irrep mH1:

P3lc P31m

P.31c P.31m Ce2/c Ce2/m Ce2/c Ce2/m P.312

Pc3 CCC Cc2 Ccm Psi Psi Cc2

Psl

P.312

N EPICS




k-SUBGROUPSMAG with an irrep filter:

Possible magnetic symmetries for a magnetic phase with

parent space group P-3m1, propagation vector (1/3,1/3,1/2) and
magnetic atom at 1b (0,0,1/2)

P3lc

P3lm

P3m1l

Ce2fc

Ce2/m

PJ3lc

dim
small irrep

Magn_rep (1b)= 1mH1(1)+1mH3(2)

(dim: 6)

P3im

Ce2/c

Ce2/m

P312

P3

Ce2

Psl

Psl

C.2

Ps1

mH3

(k, -k not equivalent)

Restricted to the
FULL (k,-k) irrep mH1:

P.312




The number of possible epikernels for an irrep increases wih the
dimension of the irrep:

Ba,Nb,NiO,
(maqndata #1.13)

123l
1

Tutorial 2 i k=(1/3,1/3,1/2) 4-dim irrep mH3
P.3lm C:2/c C.2/m C:2/c Ce2/m
2 4 6 5 7
P3 C 2 @ Psl Ps1 C.2
3 8 10 9 13 12 11

Psl
14

13 distinct epikernels for 4-dim irrep mH3 of P-3m1 (some k-maximal

and some not)



Conclusions:

* The assignment of MSG is a must: Whatever method is employed to
determine a commensurate magnetic structure, the final model has
necessarily a certain symmetry that must be given by a MSG, which
should be identified.

* The description using the MSG in a crystallographic form is the best
“way”: The simpler, more robust and unambiguous form of describing a
commensurate magnetic structure is to use consistently its MSG and only
give the atomic positions and magnetic moments of a set of

symmetry independent atoms with respect to this MSG.

 The MSG is relevant for all properties: Properties of commensurate
magnetic phases are constrained by their MSG, including their atomic
positions. Any possible magneto-structural induced effect is constrained
by the MSG.



Conclusions:

* Representation analysis of magnetic structures is NOT in general
equivalent to the use of magnetic symmetry (i.e. to give an irrep is
not equivalent to give the magnetic space (superspace) group of the
system).

* Irrep constraints additional to those of the MSG are not needed in
most cases: Only in the less frequent case that the MSG of the structure
is compatible with more than one irrep for the magnetic arrangement, the
restriction to a single irrep introduces additional constraints not taken into
account by the MSG, and their existence has to be indicated extra. In
these cases the best approach is to combine magnetic symmetry and
representation analysis.

* In the case of incommensurate structures similar considerations
apply but with MSSGs: The symmetry of these systems is described

by the so-called magnetic superspace groups (MSSGs).



Other programs that determine the epikernels and kernel of any irrep,
and produce magnetic structural models complying with them.

Program for mode analysis:
ISODISTORT http://stokes.byu.edu/iso/isotropy.php  Stokes & Campbell, Provo

Version 6.1.8, November 2014
Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch, Department of Physics and Astronomy, Brigham Young University, Provo, Utah, 84602, USA,

stokesh@byu.edu

Description: ISODISTORT is a tool for exploring the structural distortion modes of crystalline materials. It provides a user-friendly interface to many of the
algorithms used by the Isotropy Software Suite, allowing one to generate and explore distortion modes induced by irreducible representations of the
parent space-group symmetry. It also provides a Java applet for visualizing and interactively manipulating the free parameters associated with these modes.

Help, Tutorials, Version History

NOTICE: Version 6.1 is a major new release. We appreciate your bug reports -- please send relevant input files along with the html page showing the failed
output.

Legacy copy of ISODISTORT version 5.6.1, August 2013 Both programs also support incommensurate
cases, deriving epikernels and kernel of the irreps
in the form of MSSGs, and corresponding

Get started quickly with a cubic perovskite parent. mag netic mOdeIS

Import parent structure from a CIF structure file: m Browse... | No file selected.

Begin by entering the structure of parent phase: @

Program for structure refinement:

Institute of Physics  http://jana.fzu.cz/ V/, Petricek, Prague

Departmer?t of Structure Analysis Academy of Sciences | Institute of Physics
Cukrovarnicka 10 Dept of Structure Analysis | Laboratory of Crystallography
16253 Praha 6 ECA-SIG#3 | Contact Us

Czech Republic

CRYSTALLOGRAPHIC COMPUTING SYSTEM FOR STANDARD AND MODULATED STRUCTURES

Vaclav Petricek, Michal Dusek & Lukas Palatinus

News ﬂ

lmsmssmuns MDA ANAE ADEDIANIAANALE. Alateant avhmainain; Adasdli;a 2N A wsil




What about magnetic incommensurate structures?

Their symmetry is given by
a magnetic superspace group (MSSG)




CedeZSn magndata 1.1.9 space inversion is maintained !

superspace group: Pbam1'(a00)0s0s  parent space group: P4/mbm
k= (,0,0)

space inversion conserved | Kernel
[only one irrep mode)
{1°]000% }

and {-1/0000} Pbam1'(a00)000s
[2 parameters]

Pbam1'(a00)0sss
[4 parameters]

Pbam1'(a00)00ss
[4 parameters]

Pbam1'(a00)0s0s
[2 parameters]

symmetry of the mDT4
phase




Beware when interpreting ISODISTORT output:

ISODISTORT: order parameter direction

Space Group: 127 P4/mbm D4h-5, Lattice parameters: a=7.76200, b=7.76200, c=3.93000, alpha=90.00000, beta=90.00000, gamma=90.00000
Default space-group preferences: monoclinic axes a(b)c, monoclinic cell choice 1, orthorhombic axes abc, origin choice 2, hexagonal axes, SSG ¢
Ce1l 4h (x,x+1/2,1/2), x=0.17810, Pd1 4g (x,x+1/2,0), x=0.37340, Pd2 4e (0,0,z), z=0.31900, occ=0.03100, Sn1 2a (0,0,0), occ=0.93800

Include strain, displacive ALL, magnetic Ce distortions

k point: DT (0,b,0), b=0.70000 (1 incommensurate modulation/2 arms) 1 Order Parameter

IR: mDT1 . .
> can be misleading!

Finish cting the distortion mode by c
©OP (a,0;0,0) 55.1.9.4.m354.2 Pcmat

with ANY OP direction (not (a,0))

n order parameter direction @
,0,9)000s, basis={(1,0,0,0),(0,0,-1,0),(0,1,0,0),(0,0,0,1)}, origin=(0,0,0,0), s=1, i=2, k-active= (0,0.300,0)

C (a,b;0,0) 26.1.9.1.m67.2 Pmc2_11'(0,0,g)000s, basis={(0,0,1,0),(1,0,0,0),(0,1,0,0),(0,0,0,1)}, origin=(1/4,0,0,0), s=1, i=4, k-active= (0,0.300,0)

it requires 2 independent Order
Parameters

with the same irrep

(Landau condition is not fulfilled)




Two possible higher alternative superspace symmetries for the
same irrep.

k= (1/31 1/31 Y) .
irrep: mP2p3 (4-dim)

L N T O
WSRO R N
| A\ &'«\ b «»
Wb AN

(M, ZEM, 0)cos(x,) + (M, 0, 0)sin(x) (M, My, M)cos(xs)




Tutorial to follow:

Tutorial_magnetic_sect
ion_BCS_2
Only section 2.2

Magnetic Symmetry and Applications

MGENPOS
MWYCKPOS

MKVEC A\
IDENTIFY MAGNETIC GROUP

BNS20G
mCIF2PCR
MPOINT
MAGNEXT

MAXMAGN
MAGMODELIZE
STRCONVERT

k-SUBGROUPSMAG

MAGNDATA
MVISUALIZE
MTENSOR 4\
MAGNETIC REP.

et_mirreps

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

Transformation of symmetry operations between BNS and OG settings
Transformation from mCIF to PCR format (FullProf).

Magnetic Point Group Tables

Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a propagation
vector

Magnetic structure models for any given magnetic symmetry

Convert & Edit Structure Data
(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

A collection of magnetic structures with portable cif-type files
3D Visualization of magnetic structures with Jmol
Symmetry-adapted form of crystal tensors in magnetic phases
Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition




MAGNDATA: A Collection of magnetic structures with portable cif-type files

Element search (separate with space or comma): | | @AND OOR (‘search)

312 structures found

Update: by April 2022 it contains about 1800 structures

Zero propagation vector

0.1 LZL\"IIIO; 0.2 CngSQOT 03 Ca;LiOSO(,

0.6 YMnOs; 0.7 ScMnOs; 0.8 ScMnO; 0.10 DyFeO;,

Sr,F,Fe,0S, (MAGNDATA #2.2)



MAGNDATA: A Collection of magnetic structures with portable cif-type files

A database of more than 1000 published commensurate and
incommensurate magnetic structures can be found here. The
structures are described using magnetic symmetry (Shubnikov
magnetic space groups) in the BNS setting for commensurate
structures, and magnetic superspace groups for incommensurate
structures. Symmetry is applied both for magnetic moments and
atomic positions. The information provided is sufficient to define
unambiguously the positions and magnetic moments (if any) of all
atoms in the structure. A non-standard setting consistent with the
setting of the paramagnetic phase is often used (this setting does not
necessarily coincide with the one used in the original reference). A cif-
like (.mcif) file of each entry can be downloaded. mcif files are
supported by: ISOCIF, ISODISTORT, VESTA, Jmol, JANA2006 and
FullProf. ISOCIF can be used to generate an alternative mcif file in a
standard setting, as required by ISODISTORT. Vesta files for
visualization of a single magnetic unit cell are also available. Any entry
can be directly downloaded in StrConvert for editing, visualization,

Login

View Full Database
Element search (separate with space or comma): OAND © OR search

Enter the label of the structure: Submit

Advanced Search & Statistics

To upload any published structure
click HERE

Now you can help to complete the
database and submit your structure(s)
or any other published structure that
you may fancy.




STRCONVERT: Editor of Structure magCIF files and other formats

Magnetic Symmetry and Applications

MGENPOS
MWYCKPOS

MKVEC 4\

IDENTIFY MAGNETIC GROUP

BNS20G
mCIF2PCR
MPOINT
MAGNEXT

MAXMAGN
MAGMODELIZE

_yTRCONVERT

k-SUBGROUPSMAG

MAGNDATA
MVISUALIZE

MTENSOR 4\
MAGNETIC REP.

Get_mirreps

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

Transformation of symmetry operations between BNS and OG settings
Transformation from mCIF to PCR format (FullProf).

Magnetic Point Group Tables

Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a propagation
vector

Magnetic structure models for any given magnetic symmetry

Convert & Edit Structure Data
(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

A collection of magnetic structures with portable cif-type files
3D Visualization of magnetic structures with Jmol
Symmetry-adapted form of crystal tensors in magnetic phases
Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition




Structure Data Converter & Editor

Please submit a structure file:

( N : linload the file )
Browse... | No file selected. Upload the file

[Supported file formats: CIF, mCIF, VESTA, VASP]

Symmetry
Magnetic Space Group # (BNS): 31129 (P_bmn2_1) Type: IV

Lattice Parameters
a: 11.670A b: 7360eA o s.2572A

a 9o.o00c® B: 90.00c® y: 90.00¢°

Symmetry Operations [Show/Hide]

Recognized formats:
1. x,y,Z mx,my,mz +1
X,Y,Z mx,my,mz +1
X,¥,Z
X,y,Z,+1
1'%, v, 2
1xy.z

X,¥,2,+1
-x+1/4,-y,2+1/2,+1
X,-y+1/2,z,+1
-x+1/4,y+1/2,241/2,+1
x+1/2,y,2,-1
-x+3/4,-y,2+1/2,-1
x+1/2,-y+1/2,2z,-1
-x+3/4,y+1/2,2z+1/2,-1

() Update the symmetry operators with the above

Symmetry operations have been parsed from the file/form
CPopuIate with operators from database)




Structure Data Converter & Editor

Atomic Positions & Magnetic Moments
Switch to the treatment of the vectors as: | displacements ! ( Go! )

Se—r
Label Element x y z Occ. my my mz
(] Ho Ho 0.04195 0.25000 0.98250 1.00000 l 0.00000 0.00000 0.00000
(] Ho_1 Ho 0.95805 0.75000 0.01750 1.00000 l 0.00000 0.00000 0.00000
(] Mn Mn 0.00000 0.00000 0.50000 1.00000 l 3.87000 0.00000 0.00000
(O |01 0 0.23110 0.25000 0.11130 1.00000 | 0.00000 0.00000 0.00000
(] 011 o) 0.76890 0.75000 0.88870 1.00000 l 0.00000 0.00000 0.00000
(O |02 0O 0.16405 0.05340 0.70130 1.00000 l 0.00000 0.00000 0.00000
(] 021 o) 0.83595 0.55340 0.29870 1.00000 l 0.00000 0.00000 0.00000
Add atoms more. || ( Remove selected atoms ) || ( Change the selected atoms' symbol to )

{ Select the atoms with the symbol: |l (selectallatoms ) || ( unselectall atoms )

[for VESTA format export: A (Default: min(a,b,c)/4)]
[for Jmol visualize: a proportional coefficient] mag CIF file can

be produced:

Longest Arrow size: 1.314

( Export to BCS format ) | { Export to VESTA format )
{ Export to Standard CIF format ) | ( Export to MCIF form

(Export to VASP format ) | ( Transform the structure to P1 setting )

( Remove the magnetic information ) | ( Re-order the sites ) | ( Visualize )




