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Mirror symmetry operation
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X = Fi(x,y,2)
Wie+Wiy+Wizz+w;
Worx + Waay + Waz z + wo
Ws1x + Waay + W3z 2 + ws.




Matrix-column presentation of

Isometries
f W11W12W13 £ (V0N
y| = | WorWoaWas | | y | + | w2
yA W31W32W33 yA W3
linear/matrix translation
part column part

x=(W,w)x or z={W|w}zx

matrix-column Seitz symbol
pair



EXERCISES Problem 2.14

Referred to an ‘orthorhombic’ coordinated system (a#b+c;

x=B=y=90) two symmetry operations are represented by the
following matrix-column pairs:

y 0 - 112
(Wi,wi)= | 0 (W2,w2)= | 0

- | 0 -1 (] 1/2
Determine the images X of a Can you guess what is the
point X under the symmetry geometric ‘nature’ of (Wi,w))?

operations (Wi,wi) where And of (W2,w2)?

0,70
X=| 03I Hint:
0,95 A drawing could be rather helpful




EXERCISES Problem 2.14

Characterization of the symmetry operations:

det | =7 tr | =7

What are the fixed points of (Wi,wi) and (W2,w2) ?

- | /2 Xt Xf
I 0 yi | = | ys
-1 {12 Z Z




W,w -
dsomemry: x5

Wiz + Wiy + Wiz +w;
Waorz + Waay + Wasz z + wo
Wsix + Waay + Wazz +ws

_ -left-hand side: omitted
-coefficients O, +1, -1

-different rows in one line

- | 112 -X+ |/2, Ys -z+1/2
. 0 >'{ )_(+|/2,y,E+|/2

-1 1/2

N 2
|




EXERCISES

Problem 2.15

Construct the matrix-column pair (W,w) of the
following coordinate triplets:

(1) x.y.z (2) -x,y+1/2,-z+1/2
(3) -x,-y,-z  (4) X-y+1/2,z+1/2



Combination of isometries

(Uu)




EXERCISES Problem 2.14(cont)

Consider the matrix-column pairs of the two symmetry operations:

0 |-l 0 y 1/2
(WiwD)=[ [ 1]o 0 (W2,w2)= | 0
1110 -1 {172

Determine and compare the matrix-column pairs of the combined
symmetry operations:

(W,w)=(W,w1)(W2,w2)
(W,w)'=(W2,w2)(Wi,w)

combination of isometries:




Inverse isometries

% (W,w)

@ m———— ) X
. —
X (C,0)=(W,w)-!

B I = 3x3 identity matrix
(C.c)(Ww) = (l,0) O = zero translation column

(C,c)(W.w) = (CW, Cw+c)

CV w:o

—-Cw—-W w



EXERCISES Problem 2.14(cont)

Determine the inverse symmetry operations (VW,w)-! and
(W2,w2)-! where

(WI,WI)=((I) -ol g (Wz,wz)=(-I | If)

Determine the inverse symmetry operation (VV,w)-!

(Ww)=(Wi,w1)(Wa,w2)

inverse of isometries:




EXERCISES

Problem 2.14(cont)

Consider the matrix-column pairs

010 1/2 010 0
4,0) = (loo) | (1/2) and (B, ) = (001) | (o)
001 1/2 100 0

(i) What is the matrix—column pair resulting from
(B, b)(A, a)=(C,c),and (A4, a) (B, b) = (D,d) ?
(ii) What is (4,a)~ %, (B,b)" %, (C,¢) ' and (D,d)™* ?
(iii) What is (B,b) ' (4, a)™* ?
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EXERCISES

Problem 2.15 (cont.)

Construct the (4x4) matrix-presentation of the
following coordinate triplets:

(1) x.y.z (2) -x,y+1/2,-z+1/2
(3) -x,-y,-z  (4) X-y+1/2,z+1/2



Crystallographic symmetry operations

Symmetry operations of an object

The isometries which map the object onto itself are called symmetry operations of this
object. The symmetry of the object is the set of all its symmetry operations.

Crystallographic symmetry operations

If the object is a crystal pattern, representing a real crystal, its symmetry operations are
called crystallographic symmetry operations.

The equilateral triangle allows six symmetry
operations: rotations by 120 and 240 around its
centre, reflections through the three thick lines
intersecting the centre, and the identity operation.




Crystallographic symmetry operations

fixed points of isometries (VWV,w)X=Xs

characteristics: ,
geometric elements

Types of isometries preserve handedness

identity: the whole space fixed

translation t:  no fixed point X=X+t

rotation: one I?ne ﬁxgd b=k x 36OO/N
rotation axis

no fixed point
screw axis screw vector

screw rotation:



/ Rotation (around an axis) \
2

T

Rotation of order n = rotation by ¢ = -

tz
[
Xl’yl' Zt n ;
O >y

X

(cosp -sing 0

a(n)=|sinp cosp O Det = +1




Crystallographic symmetry operations

Screw rotation

n n-fold rotation followed

by a fractional
P, X : b
: translation = ¢ parallel

to the rotation axis

. XP,
I
nt ’L,—é;z"'*""P Its application n times
p results in a translation
\ P, parallel to the rotation
‘ axis
27




do not

Types of isometries
YP preserve handedness

centre of roto-inversion fixed

roto-inversion: . . .
roto-inversion axis

inversion: centre of inversion fixed

plane fixed
reflection/mirror plane

reflection:

no fixed point

glide reflection: . |
glide plane glide vector



/ Inversion (through a point) \
tz

X,V Ze®
‘/O\‘\ >y 1
X ® —XI -},; — s

a crystal which has the inversion
symmetry is called cenfrosymmeftrical.

-1 0 OO

al)=|0-10 Det = -1
N




/ Roto-inversion \
(around an axis and through a point)

Rotation followed by an inversion

Z
X',y 2Q|n -
o) >y

X .—X" _yl’ —Z'

\
\

(-cos@ sing 0O )

a(n)=|-sinp -cose¢ O Det = -1
NGO Y,




/Reflec'rion (through a mirror plam

4
X,V Z

/Y

®X Yy -2

)

"".'l""'.

Note that: m=2 [

1 0 0°

al)=| 01 0 Det = -1
\ 0 0 -1, /




Crystallographic symmetry operations

Glide plane
> > reflection followed by a
T ok Ifractional translation
: 5 t parallel to the plane
P’ 4o P, Its application 2 times

results in a translation
parallel to the plane



Matrix-column presentation of
some symmetry operations

Rotation or roto-inversion around the origin:

Wi | Wiz | Wis 0 0 0

Wai | Wa | Wa 0 0 0

Wi | Wan | Wss 0 0 0

Translation:

wl X x+w

w3 z z+w3

Inversion through the origin:

-1 0 X -X




GEOMETRICAL
INTERPRETATION OF

MATRIX-COLUMN
PRESENTATIONS OF
SYMMETRY OPERATIONS




det(W) = 1
tr(W)
2
2

3 -3 -2 -1
type 1 6 4 3 1 6 4 3
order 1 6 4 3 2 §) 4 6

cosp = (tr(W) —1)/2



EXERCISES Problem 2.15 (cont.)

Determine the type and order of isometries that
are represented by the following matrix-column
pairs:

(1) x,y,z (2) -x,y+1/2,-z+1/2

(3) -x,-y,-z  (4) x-y+1/2,z+1/2

(a) type of isometry

det( W) = +1 det( W) = —1
(W) |3 2 1 0 -1]-3 -2 -1 0 1
type 1 6 4 3 2 1 6 4 3 2=m
order 1 6 4 3 2 2 6 4 6 2




EXERCISES

Problem 2.14(cont.)

Consider the matrix-column pairs

010 1/2 010 0
4,0) = (loo) | (1/2) and (B, ) = (001) | (o)
001 1/2 100 0

(i) What is the matrix—column pair resulting from
(B, b)(A, a)=(C,c),and (A4, a) (B, b) = (D,d) ?
(ii) What is (4,a)~ %, (B,b)" %, (C,¢) ' and (D,d)™* ?
(iii) What is (B,b) ' (4, a)™* ?

(" . o . h
Determine the type and order of isometries that
are represented by the matrices A, B, C and D:

.

J







Direction of rotation axis/normal

Example:

(Wiw)=

1/2

1/2

det W=?
tr W=?

Vhat is the type and order of the isometry?

Determine its rotation

axis?

([ YW)=WkIl+Wk2+ +W+] |

Y(W)= L




EXERCISES Problem 2.15 (cont)

Determine the rotation or rotoinversion axes (or
normals in case of reflections) of the following
symmetry operations

(2) -x,y+1/2,-z+1/2 (4) x,-y+1/2,z+1/2

rotations: Y(W) = Wk-1 + Wk-2 + + W + |

reflections: Y(-W)=-W+I



det(Z): Z = |u|x|(det W) W x|

X non-parallel to U



Sense of rotation

Example: (Ww)z(o ) det W=Itr W=I
010 | 1/2 w=400|

What is its sense of rotation?
| det(Z): Z = [u|z|(det W) Wx]|
det Z=?

0 ! 0 I 0 | 0 I 0

u=|°| X=|°| WX=|-1]o]o]]o Z= 0o

| 0 010 I 0 I 0110

What is the sense of rotation of the operation
-y, X-y+1/2,-z+1/2



Fixed points of isometries

[ (Ww)X=Xs |

/\

__solution: NO solution:
point, line, plane or space

- | 0 0 0 I 0 0 0
o1 ]o 0 y | =1y o1 ]|o|[|m y
0 0 | -I 112 z z 0 0 | -I 1/2
Fixed points?
4 \

wi

translation part w= |~

7N

location

INtrinsic
(screw, glide)
\_




Glide or Screw component
(intrinsic translation part)

(W,w)k= (W,w). (W,w). ... .(W,w)=(lt)

(W, W)k=(WK (Wk-1+__+ W+Dw) =(I,t)

screw rotations : ( t/k=1/k (Wk!+_ .+ W+l)w)

1
glide reflections: t/ k= 5( W +1)w



EXERCISES Problem 2.15 (cont.)

Determine the intrinsic translation parts (if
relevant) of the following symmetry operations

(1) xy,z (2) -xy+1/2,-z+1/2
3) x,-y,-z  (4) X-y+1/2,z+1/2

screw rotations: t/k=[/k (W«!+..+ W+I)w

glide reflections: ¢ /k — %( W + 1w



Fixed points of (W,w)

S (W w)er = o
S (W, w)er = o

wp, = w — t/k




EXERCISES Problem 2.15 (cont.)

Determine the fixed points of the following
symmetry operations:

(1) x.y.z (2) -xy+1/2,-z+1/2
(3) -X,=Yy-Z (4) X,')"" I/Z, z+1/2

fixed points: (W, wy,)xr = xp



International Tables for Crystallography (2006). Vol. A, Space groi

5
P21/C C2h 2/m I
No. 14 P121/C1 Patterson sy

UNIQUE AXIS b, CELL CHOICE 1
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EXAMPLE ¢ ¢ ¢ ~—| | —
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o o o o | o | o
/ [ | |
¢ ¢ / —| =
COI O OI o [ o} I OG
Generators selected (1); #(1,0,0); #(0,1,0); ¢(0,0,1); (2); (3)
Positions
Multiplicity, Coordinates
Wyckoff letter,
Site symmetry

Matrix-column
presentation

) Symmetry operations
~ Geometric i
Interpretation (1) 1 (2) 2(0,:,0) 0,y,: 3)1 0,0,0 4) ¢ x,:,2

(1) x,y,z : 4) x,y+ 3,2+

i

Space group P2,/c (No.

|1 4)
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EXERCISES Problem 2.15

Construct the matrix-column pairs (W,w) of the
following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2
(3) -X,-y,-z  (4) x,-y+1/2,z+1/2
Characterize geometrically these matrix-column

pairs taking into account that they refer to a
monoclinic basis with unique axis b,

Use the program SYMMETRY OPERATIONS for the

geometric interpretation of the matrix-column pairs of
the symmetry operations.
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Bilbao Crystallographic Server

&

p
Problem: Geometric
Interpretation of (W,w)

SYMMETRY
OPERATION

This program calculates the geometric interpretation of
matrix column representation of symmetry operation for a
given crystal system or space group.

Input:
i) The crystal system or the space group number.
ii) The matrix column representation of symmetry operation.

If you want to work on a non conventional setting click on
Non conventional setting, this will show you a form where
you have to introduce the transformation matrix relating the
conventional setting of the group you have chosen with the
non conventional one you are interested in.

Output:

We obtain the geometric interpretation of the symmetry
operation.

Introduce the crystal system ‘

monoclinic &/

Or enter the sequential number of group as given in the International Tables for

Crystallography, Vol. A (choose it
Matrix column representation of symmetry
operation
Rotational part Translation
0 0 0
In matrix form 0 1 0 0
0 0 1 0
“Standard/Default Setting | “Non Conventional Setting "ITA Settings |
l
'/ 0
0 O aO
§/ /
0 0 o/ o o/
0 1/2 2 (0,1/2,0) 0,y,1/4 / [
-1 1/2 ‘




