International School on Fundamental Crystallography Sixth MaThCryst school in Latin America Workshop on the Applications of Group Theory in the Study of Phase Transitions

Bogotá, Colombia, 26 November - $1^{\text {st }}$ December 2018

CRYSTALLOGRAPHIC SYMMETRY OPERATIONS

Mois I. Aroyo
 Universidad del Pais Vasco, Bilbao, Spain

SYMMETRY OPERATIONS AND
 THEIR MATRIX-COLUMN PRESENTATION

Example: Matrix presentation of symmetry operation

Mirror symmetry operation

drawing: M.M. Julian
Foundations of Crystallography
(c) Taylor \& Francis, 2008

Fixed points

$$
m_{y} \begin{array}{|c|}
\hline x_{f} \\
\hline y_{f} \\
\hline
\end{array}=\begin{array}{|l|}
\hline x_{f} \\
\hline y_{f} \\
\hline
\end{array}
$$

Mirror line m_{y} at $\mathbf{0 , y}$

Matrix representation

$$
m_{y} \begin{array}{|l|}
\hline x \\
\hline y \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline-x \\
\hline y \\
\hline-1 & \\
\hline & 1 \\
\hline y \\
\hline
\end{array}
$$

det

Description of isometries

coordinate system: $\quad\{O, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$

isometry:

$$
\left\lvert\, \begin{aligned}
& \tilde{x}=W_{11} x+W_{12} y+W_{13} z+w_{1} \\
& \tilde{y}=W_{21} x+W_{22} y+W_{23} z+w_{2} \\
& \tilde{z}=W_{31} x+W_{32} y+W_{33} z+w_{3}
\end{aligned}\right.
$$

Matrix-column presentation of isometries

$$
\begin{array}{r}
\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right)= \\
\underset{\text { linear/matrix }}{\left(\begin{array}{l}
W_{11} W_{12} W_{13} \\
W_{21} W_{22} W_{23} \\
W_{31} W_{32} W_{33}
\end{array}\right)}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) \\
\text { translation } \\
\text { column part }
\end{array}
$$

$\tilde{\boldsymbol{x}}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{w}$

$$
\tilde{\boldsymbol{x}}=(\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x} \text { or } \tilde{\boldsymbol{x}}=\{\boldsymbol{W} \mid \boldsymbol{w}\} \boldsymbol{x}
$$

matrix-column
Seitz symbol pair

EXERCISES

Problem 2.14

Referred to an 'orthorhombic' coordinated system ($\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$; $\alpha=\beta=\gamma=90$) two symmetry operations are represented by the following matrix-column pairs:

Determine the images X_{i} of a point X under the symmetry operations ($\mathrm{W}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}$) where

$$
X=\begin{array}{|l|}
\hline 0,70 \\
\hline 0,31 \\
\hline 0,95 \\
\hline
\end{array}
$$

Can you guess what is the geometric 'nature' of ($\left.\mathrm{W}_{1}, \mathrm{w}_{1}\right)$?
And of $\left(W_{2}, w_{2}\right)$?

Hint:
A drawing could be rather helpful

EXERCISES

Characterization of the symmetry operations:

What are the fixed points of $\left(\mathrm{W}_{1}, \mathrm{w}_{1}\right)$ and $\left(\mathrm{W}_{2}, \mathrm{w}_{2}\right)$?

Short-hand notation for the description of isometries

isometry:

$$
\begin{aligned}
& \mathrm{X} \circ \xrightarrow[(\mathbf{W}, \mathbf{w})]{ } \circ \stackrel{\sim}{\mathrm{X}} \\
& \left\lvert\, \begin{array}{l}
\tilde{x}=W_{11} x+W_{12} y+W_{13} z+w_{1} \\
\tilde{y}= \\
\tilde{z}=W_{21} x+W_{22} y+W_{23} z+w_{2} \\
\tilde{z}=
\end{array} W_{31} x+W_{32} y+W_{33} z+w_{3}\right.
\end{aligned}
$$

notation rules: -left-hand side: omitted -coefficients $0,+1,-1$
-different rows in one line

examples:

EXERCISES

Problem 2.15

Construct the matrix-column pair (W, w) of the following coordinate triplets:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,--y,-z$
(4) $x,-y+I / 2, z+I / 2$

Combination of isometries

$$
(\boldsymbol{W}, \boldsymbol{w})=(\boldsymbol{V}, \boldsymbol{v})(\boldsymbol{U}, \boldsymbol{u})=(\boldsymbol{V} \boldsymbol{U}, \boldsymbol{V} \boldsymbol{u}+\boldsymbol{v})
$$

$$
\begin{aligned}
& \text { (U,u) } \\
& \tilde{\boldsymbol{x}}=\boldsymbol{U} \boldsymbol{x}+\boldsymbol{u} ; \\
& \tilde{\tilde{\boldsymbol{x}}}=\boldsymbol{V} \tilde{\boldsymbol{x}}+\boldsymbol{v} \text {; } \\
& \tilde{\tilde{\boldsymbol{x}}}=\boldsymbol{V}(\boldsymbol{U} \boldsymbol{x}+\boldsymbol{u})+\boldsymbol{v} ; \\
& \tilde{\tilde{\boldsymbol{x}}}=\boldsymbol{V} \boldsymbol{U} \boldsymbol{x}+\boldsymbol{V} \boldsymbol{u}+\boldsymbol{v}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{w} . \\
& \tilde{\tilde{\boldsymbol{x}}}=(\boldsymbol{V}, \boldsymbol{v}) \tilde{\boldsymbol{x}}=(\boldsymbol{V}, \boldsymbol{v})(\boldsymbol{U}, \boldsymbol{u}) \boldsymbol{x}=(\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x} .
\end{aligned}
$$

EXERCISES

Problem 2.14(cont)

Consider the matrix-column pairs of the two symmetry operations:

Determine and compare the matrix-column pairs of the combined symmetry operations:

$$
\begin{aligned}
& (W, w)=\left(W_{1}, W_{1}\right)\left(W_{2}, W_{2}\right) \\
& (W, w)^{\prime}=\left(W_{2}, W_{2}\right)\left(W_{⿺}, w_{l}\right)
\end{aligned}
$$

combination of isometries:

$$
\left(\boldsymbol{W}_{2}, \boldsymbol{w}_{2}\right)\left(\boldsymbol{W}_{1}, \boldsymbol{w}_{1}\right)=\left(\boldsymbol{W}_{2} \boldsymbol{W}_{1}, \boldsymbol{W}_{2} \boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right)
$$

Inverse isometries

EXERCISES

Determine the inverse symmetry operations ($\left.\mathrm{W}_{\mathrm{l}}, \mathrm{w}_{\mathrm{l}}\right)^{-1}$ and $\left(W_{2}, W_{2}\right)^{-1}$ where

Determine the inverse symmetry operation (W,w)-1

$$
(W, w)=\left(W_{1}, w_{1}\right)\left(W_{2}, w_{2}\right)
$$

inverse of isometries:

$$
(\boldsymbol{W}, \boldsymbol{w})^{-1}=\left(\boldsymbol{W}^{-1},-\boldsymbol{W}^{-1} \boldsymbol{w}\right)
$$

EXERCISES

Problem 2.14(cont)

Consider the matrix-column pairs
(i) What is the matrix-column pair resulting from

$$
(\boldsymbol{B}, \boldsymbol{b})(\boldsymbol{A}, \boldsymbol{a})=(\boldsymbol{C}, \boldsymbol{c}), \text { and }(\boldsymbol{A}, \boldsymbol{a})(\boldsymbol{B}, \boldsymbol{b})=(\boldsymbol{D}, \boldsymbol{d}) ?
$$

(ii) What is $(\boldsymbol{A}, \boldsymbol{a})^{-1},(\boldsymbol{B}, \boldsymbol{b})^{-1},(\boldsymbol{C}, \boldsymbol{c})^{-1}$ and $(\boldsymbol{D}, \boldsymbol{d})^{-1}$?
(iii) What is $(\boldsymbol{B}, \boldsymbol{b})^{-1}(\boldsymbol{A}, \boldsymbol{a})^{-1}$?

Matrix formalism: 4×4 matrices

augmented matrices:

$$
\left.\begin{array}{l}
\boldsymbol{x} \rightarrow \mathbb{\chi}=\left(\begin{array}{c}
x \\
y \\
z \\
\hline 1
\end{array}\right) ; \tilde{\boldsymbol{x}} \rightarrow \tilde{\mathfrak{z}}=\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\hline 1
\end{array}\right) \\
(\boldsymbol{W}, \boldsymbol{w}) \rightarrow \mathbb{W}=\left(\begin{array}{ll|l}
\boldsymbol{W} & \boldsymbol{W} & \boldsymbol{w} \\
& & \\
\hline 0 & 0 & 0
\end{array}\right. \\
\tilde{\boldsymbol{V}}
\end{array}\right)
$$

point $X \longrightarrow$ point $\tilde{X}:$
$\tilde{\mathcal{s}}=\mathbb{W} \mathbb{X}$

$$
\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\hline 1
\end{array}\right)=\left(\begin{array}{ccc|c}
& \boldsymbol{W} & & \boldsymbol{w} \\
& & & \\
\hline 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
\hline 1
\end{array}\right)
$$

4x4 matrices: general formulae

point $X \longrightarrow$ point $\tilde{X}:$

$$
\tilde{x}=\mathbb{W} \mathbb{x}
$$

$$
\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\hline 1
\end{array}\right)=\left(\begin{array}{lll|l}
& \boldsymbol{W} & & \boldsymbol{w} \\
& & & \\
\hline 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
\hline 1
\end{array}\right)
$$

combination and inverse of isometries:

$$
\begin{aligned}
& (\mathbb{W})^{-1}=\left(\mathbb{W}^{-1}\right) \quad \mathbb{W}^{-1}=\left(\begin{array}{ccc|c}
& W^{-1} & -\boldsymbol{W}^{-1} w \\
& & & \\
\hline 0 & 0 & 0 & 1
\end{array}\right) \\
& \mathbb{W}_{3}=\mathbb{W}_{2} \mathbb{W}_{1}
\end{aligned}
$$

EXERCISES

Problem 2.15 (cont.)

Construct the (4×4) matrix-presentation of the following coordinate triplets:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,--y,-z$
(4) $x,-y+I / 2, z+I / 2$

Crystallographic symmetry operations

Symmetry operations of an object

The isometries which map the object onto itself are called symmetry operations of this object. The symmetry of the object is the set of all its symmetry operations.

Crystallographic symmetry operations

If the object is a crystal pattern, representing a real crystal, its symmetry operations are called crystallographic symmetry operations.

The equilateral triangle allows six symmetry operations: rotations by 120 and 240 around its centre, reflections through the three thick lines intersecting the centre, and the identity operation.

Crystallographic symmetry operations

characteristics:

fixed points of isometries $(W, w) X_{f}=X_{f}$ geometric elements

Types of isometries preserve handedness

identity:
translation t :
rotation:
screw rotation:
the whole space fixed
no fixed point $\quad \tilde{\mathbf{x}}=\mathbf{x}+\mathbf{t}$
one line fixed rotation axis

$$
\phi=k \times 360^{\circ} / N
$$

no fixed point screw axis

Crystallographic symmetry operations

Crystallographic symmetry operations

Screw rotation

n-fold rotation followed by a fractional
translation $\frac{P}{n} \mathbf{t}$ parallel to the rotation axis

Its application n times results in a translation parallel to the rotation axis

Types of isometries

roto-inversion:

inversion:

reflection:

plane fixed reflection/mirror plane
centre of roto-inversion fixed roto-inversion axis
no fixed point glide plane

Symmetry operations in 3D Rotoinvertions

Inversion (through a point)

a crystal which has the inversion symmetry is called centrosymmetrical.

$$
\alpha(\overline{1})=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { Det }=-1
$$

Symmetry operations in 3D Rotoinvertions

Roto-inversion

(around an axis and through a point) Rotation followed by an inversion

$$
\alpha(\bar{n})=\left(\begin{array}{ccc}
-\cos \varphi & \sin \varphi & 0 \\
-\sin \varphi & -\cos \varphi & 0 \\
0 & 0 & -1
\end{array}\right)
$$

$$
\text { Det }=-1
$$

Symmetry operations in 3D Rotoinvertions

Reflection (through a mirror plane)

Note that: $m=\overline{2}$!

$$
\alpha(\overline{1})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Det $=-1$

Crystallographic symmetry operations

Glide plane

reflection followed by a fractional translation $\frac{1}{2} \mathbf{t}$ parallel to the plane

Its application 2 times results in a translation parallel to the plane

Matrix-column presentation of some symmetry operations

Rotation or roto-inversion around the origin:

Translation:

Inversion through the origin:

GEOMETRICAL INTERPRETATION OF MATRIX-COLUMN PRESENTATIONS OF SYMMETRY OPERATIONS

Geometric meaning of (W, w)

W information

(a) type of isometry

$\operatorname{tr}(\boldsymbol{W})$	$\operatorname{det}(\boldsymbol{W})=+1$				$\operatorname{det}(\boldsymbol{W})=-1$					
	3	2	1	0	-1	-3	-2	-1	0	1
	1	6	4	3	2	$\overline{1}$	$\overline{6}$	$\overline{4}$	$\overline{3}$	$\overline{2}=m$
order	1	6	4	3	2	2	6	4	6	2

order: $\mathbf{W n}^{\mathrm{n}}=\boldsymbol{I}$
rotation angle
$\cos \varphi=(\pm \operatorname{tr}(\boldsymbol{W})-1) / 2$

EXERCISES

Problem 2.15 (cont.)

Determine the type and order of isometries that are represented by the following matrix-column pairs:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,-y,-z$
(4) $x,-y+I / 2, z+I / 2$
(a) type of isometry

$\operatorname{tr}(\boldsymbol{W})$	$\operatorname{det}(\boldsymbol{W})=+1$				$\operatorname{det}(\boldsymbol{W})=-1$					
	3	2	1	0	-1	-3	-2	-1	0	1
	1	6	4	3	2	$\overline{1}$	$\overline{6}$	$\overline{4}$	$\overline{3}$	$\overline{2}=m$
order	1	6	4	3	2	2	6	4	6	2

EXERCISES

Problem 2.14(cont.)

Consider the matrix-column pairs
(i) What is the matrix-column pair resulting from

$$
(\boldsymbol{B}, \boldsymbol{b})(\boldsymbol{A}, \boldsymbol{a})=(\boldsymbol{C}, \boldsymbol{c}), \text { and }(\boldsymbol{A}, \boldsymbol{a})(\boldsymbol{B}, \boldsymbol{b})=(\boldsymbol{D}, \boldsymbol{d}) ?
$$

(ii) What is $(\boldsymbol{A}, \boldsymbol{a})^{-1},(\boldsymbol{B}, \boldsymbol{b})^{-1},(\boldsymbol{C}, \boldsymbol{c})^{-1}$ and $(\boldsymbol{D}, \boldsymbol{d})^{-1}$?
(iii) What is $(\boldsymbol{B}, \boldsymbol{b})^{-1}(\boldsymbol{A}, \boldsymbol{a})^{-1}$?

Determine the type and order of isometries that are represented by the matrices $\boldsymbol{A}, \boldsymbol{B}, \mathbf{C}$ and \mathbf{D} :

Geometric meaning of (W, w)

W information

(b) axis or normal direction \boldsymbol{u} :

$$
\boldsymbol{W} \boldsymbol{u}= \pm \boldsymbol{u}
$$

(bl) rotations:

$\boldsymbol{Y}(\boldsymbol{W})=\boldsymbol{W}^{k-1}+\boldsymbol{W}^{k-2}+\ldots+\boldsymbol{W}+\boldsymbol{I}$
(b2) roto-inversions: $\quad \boldsymbol{Y}(-\boldsymbol{W})$
reflections: $\quad \boldsymbol{Y}(-\boldsymbol{W})=-\boldsymbol{W}+\boldsymbol{I}$

Direction of rotation axis/normal

Example:

$$
(\mathbf{W}, \mathbf{w})=\left(\begin{array}{ccc|c}
\hline 0 & 1 & 0 & 0 \\
\hline-1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 12 \\
\hline & & 12 \\
\hline 12
\end{array}\right) \quad \operatorname{det} \mathbf{W}=?
$$

Vhat is the type and order of the isometry?

 Determine its rotation

 Determine its rotation}
axis?

$$
Y(W)=W k-1+W^{k-2}+\ldots+W+I
$$

$$
\begin{aligned}
& Y(W)= \begin{array}{|l|l|l|}
\hline 0 & -1 & 0 \\
\hline 1 & 0 & 0 \\
\hline 0 & 0 & 1 \\
\hline 0
\end{array}+\begin{array}{|l|l|l|}
\hline-1 & 0 & 0 \\
\hline 0 & -1 & 0 \\
\hline 0 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|}
\hline 0 & 1 & 0 \\
\hline-1 & 0 & 0 \\
\hline 0 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|}
\hline 1 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & 1 \\
\hline
\end{array} \\
& \text { W W W W }
\end{aligned}=\begin{array}{|l|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 4 \\
\hline
\end{array}
$$

EXERCISES

Problem 2.15 (cont)

Determine the rotation or rotoinversion axes (or normals in case of reflections) of the following symmetry operations

$$
\text { (2) }-x, y+I / 2,-z+I / 2 \quad \text { (4) } x,-y+I / 2, z+I / 2
$$

$$
Y(W)=W k-I+W k-2+\ldots+W+I
$$

reflections:

$$
Y(-W)=-W+I
$$

Geometric meaning of (W, w)

W information

(c) sense of rotation:

for rotations or rotoinversions with $k>2$

$$
\operatorname{det}(\boldsymbol{Z}): \boldsymbol{Z}=[\boldsymbol{u}|\boldsymbol{x}|(\operatorname{det} \boldsymbol{W}) \boldsymbol{W} \boldsymbol{x}]
$$

\boldsymbol{x} non-parallel to \boldsymbol{u}

Sense of rotation

Example:

$$
(W, \mathbf{W})=\left(\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
\hline-1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 12 \\
\hline 12
\end{array}\right) \quad \begin{gathered}
\operatorname{det} \mathbf{W}=1 \\
\mathbf{W}=\mathbf{4} \mathbf{0 0 1}
\end{gathered}
$$

What is its sense of rotation ?

$$
\operatorname{det}(\boldsymbol{Z}): \quad \boldsymbol{Z}=[\boldsymbol{u}|\boldsymbol{x}|(\operatorname{det} \boldsymbol{W}) \boldsymbol{W} \boldsymbol{x}]
$$

det $Z=$?

What is the sense of rotation of the operation

$$
-y, x-y+1 / 2,-z+1 / 2
$$

Fixed points of isometries

point, line, plane or space

Fixed points?

Glide or Screw component (intrinsic translation part)

$(\mathbf{W}, \mathbf{W})^{\mathrm{k}}=(\mathbf{W}, \mathbf{W}) .(\mathbf{W}, \mathbf{W}) \ldots(\mathbf{W}, \mathbf{W})=(\mathbf{I}, \boldsymbol{t})$

screw rotations: $\boldsymbol{t} / \mathrm{k}=I / \mathrm{k}\left(\mathbf{W}^{k-l+\ldots+\mathbf{W}+I) \mathbf{W}}\right.$
glide reflections: $\quad \boldsymbol{t} / k=\frac{1}{2}(\boldsymbol{W}+\boldsymbol{I}) w$

EXERCISES

Problem 2.15 (cont.)

Determine the intrinsic translation parts (if relevant) of the following symmetry operations
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,-y,-z$
(4) $x,-y+I / 2, z+I / 2$
screw rotations: $\quad \boldsymbol{t} / \mathrm{k}=\mathrm{l} / \mathrm{k}\left(\mathbf{W}^{k-1+}+. .+\mathbf{W}+I\right) \mathbf{w}$
glide reflections: $\boldsymbol{t} / k=\frac{1}{2}(\boldsymbol{W}+\boldsymbol{I}) w$

Fixed points of (W,w)

Location (fixed points $\boldsymbol{x}_{\boldsymbol{F}}$):

$$
(\mathrm{BI}) \boldsymbol{t} / k=0: \quad(\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x}_{F}=\boldsymbol{x}_{F}
$$

(B2) $\boldsymbol{t} / k \neq 0$:

$$
\begin{array}{r}
\left(\boldsymbol{W}, \boldsymbol{w}_{l p}\right) \boldsymbol{x}_{F}=\boldsymbol{x}_{F} \\
\boldsymbol{w}_{l p}=\boldsymbol{w}-\boldsymbol{t} / k
\end{array}
$$

EXERCISES

Problem 2.15 (cont.)

Determine the fixed points of the following symmetry operations:
(1) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,-y,-z$
(4) $x,-y+I / 2, z+I / 2$
fixed points: $\quad\left(\boldsymbol{W}, \boldsymbol{w}_{l p}\right) \boldsymbol{x}_{F}=\boldsymbol{x}_{F}$

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3)$

Multiplicity, Coordinates
Wyckoff letter,
Site symmetry
$P 2_{1} / c$
No. 14

P121/c1

UNIQUE AXIS b, CELL CHOICE 1

EXAMPLE

Space group P2//c (No. I4)

$$
2 / m
$$

Positions

$4 \quad e \quad 1$
(1) x, y, z
(2) $\bar{x}, y+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(3) $\bar{x}, \bar{y}, \bar{z}$
(4) $x, \bar{y}+\frac{1}{2}, z+\frac{1}{2}$

Symmetry operations

Geometric interpretation
(1) 1
(2) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, \frac{1}{4}$
(3) $\overline{1} \quad 0,0,0$
(4) $c \quad x, \frac{1}{4}, z$

FCT/ZTF

bilbao crystallographic server

Contact us
About us
Publications
How to cite the server

ECM31-Oviedo Satellite

rystallography online: workshop on the e and applications of the structural tools of the Bilbao Crystallographic Server

20-21 August 2018

ws:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
- New program: DGENPOS

04/2017: General positions of Double
Space Groups

- New program:

REPRESENTATIONS DPG

Raman and Hyper-Raman scattering

@AOMA7- Imoduchlo ronrosontatione of

Point-group symmetry

Crystallographic databases

Group-subgroup relations

Structural utilities

Representations of point and space groups

Solid-state applications

Crystallographic Databases

International Tables for Crystallography

Problem 2.15

Construct the matrix-column pairs (W, w) of the following coordinate triplets:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,-y,-z$
(4) $x,-y+I / 2, z+I / 2$

Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b,

Use the program SYMMETRY OPERATIONS for the geometric interpretation of the matrix-column pairs of the symmetry operations.

$$
\mathrm{FCT} / \angle \mathrm{TF}
$$

bilbao crystallographic server

Contact us
About us
Publications

ECM31-Oviedo Satellite
rystallography online: workshop on e and applications of the structural t of the Bilbao Crystallographic Serve

Space-group symmetry

Generators and General Positions of Space Groups
Wyckoff Positions of Space Groups
Reflection conditions of Space Groups
Maximal Subgroups of Space Groups
Series of Maximal Isomorphic Subgroups of Space Groups
Equivalent Sets of Wyckoff Positions
Normalizers of Space Groups
The k-vector types and Brillouin zones of Space Groups
Geometric interpretation of matrix column representations of symmetry operations
Identification of a Space Group from a set of generators in an arbitrary setting

20-21 August 2018

ws:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
- New program: DGENPOS

04/2017: General positions of Double Space Groups

- New program: REPRESENTATIONS DPG
0AOMA7- Imoduchlo ronrosontatione of

Structure Utilities

Subperiodic Groups: Layer, Rod and Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

Bilbao Crystallographic Server

Problem: Geometric Interpretation of (W,w)

SYMMETRY
 OPERATION

Symmetry Operation

This program calculates the geometric interpretation of matrix column representation of symmetry operation for a given crystal system or space group.

Input:
i) The crystal system or the space group number.
ii) The matrix column representation of symmetry operation.

If you want to work on a non conventional setting click on Non conventional setting, this will show you a form where you have to introduce the transformation matrix relating the conventional setting of the group you have chosen with the non conventional one you are interested in.
Output:
We obtain the geometric interpretation of the symmetry operation.

