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What is a ?

Definition:
» A rectangular array of numbers
e IN  roOws
« and columns
» S called an matrix A

Use boldface italics upper case letters to indicate
matrix, e.g. A, B, W.

An item in a matrix is
called an or




Sgquare Matrix:
An (n X n) matrix
# rows = # columns

Column Matrix:
An (m X 1) matrix
Row index changes

Row Matrix:
A (/ X»n) matrix
Column index changes

Index 1 is often omitted for column and row matrices.



Transposed Matrix A’

Let A be a (m X n) matrix

The (n x m) matrix obtained from

A= (4,) by and
s called the transposed

matrix AL

Reminder: E means EE




Example 1:

Given that

determine AT




Symmetric Matrix

A sguare matrix is symmetric if AT = A
l.e. If A, = A, for any pair ik.

Symmetric with respect to
- Top left to bottom right




Aii=0, i=| ,2,3
as Aik=-Axi




EXERCISE 2.1.1 Problems

|. Construct the transposed matrix of the (3x1)
row matrix:

| | 3 | 4

2. Determine which of the following matrices are
symmetric and which are skew-symmetric:

1310 3|4 (2 ]-1 102 |0

A 0|2 B'-4| C_-I | D'-zo E'|
0|1 ]-2 3 | 2 0

F= (3) G=|-1]|0]3 H=|:] IE
2 [-3]0 1 | o 0




Matrix Calculations

Multiplication withia number (scalar product):
An (m X n) matrix A is multiplied with a
number A by multiplying each element with A:

___-—111 ___‘-112 . s = -"-'.Iillﬂ- }1....‘_111 .}!....'_112 ® @ @ }L..'_lln
...“1'3]_ ...“1'32 s s .z"il'?ﬂ_ )\....“121 }1....“122 ‘o oa /\...“13“

A= — AN =
# # &
#
# # & &
& & . &

)Uilm.l )"-iq-'lﬂ.ﬂ v A*"il-:rnﬂ |



Example 2:

Given that

determine 3A




\Viatrix addition and subtraction:

Let 4, and 5, be general elements of matrices A and B.

A and B must be of the same size (I.e. same number of rows
and columns). Then the sum and the difference A + B s:

B]_]_ B]_E . e oa Blﬂ
Ba1 Bas ... By,

Bml Bm? O Bmﬂ

/ :Blg Alﬂ:
2 + Bo9 Ao, S

A'.'rﬂﬂ. -

Element C;, of Cis equal to the sum or difference ofi the
elements 4., and B, of A and B for any pair i,k4:
Cir = Ay + By




EXERCISE 2.1.2 Problems

|. Find 3A-2B, where
| | 2 | | 3

A=3T0| B 014

2. Show that the sum of any matrix and its
transpose IS a symmetric matrix, I.e.

(A+AT)T=A+AT

3. Show that the difference of any matrix and its
transpose is a skew-symmetric matrix, i.e.

(A-AT)T=-(A-AT)



\Viatrix multiplication

The multiplication ofi two matrices Is only defined

when:

- the number 7n,,,,,, Of columns of the left matrix is the
same as

- the number of 2, of rows on the right matrix

- no restriction on 72,,,,,, OF rows of the /left matrix

- no restriction on 7,,,,,,, OF rows of the right matrix

# columns of left matrix = # rows, of right matrix




Viultiplication
Product of two matrices A and B:

TThe matrix product C = AB or

" C1k

ol
= P

*"il-:rnl *"ilmi'- LR ""4"]'??.:.;

[Nol=ilgleIoMOlA Cix = Ai1 Bix + Aia Bog + ...+ Aij Bjy +... + Air By,




Examples: Matrix Multiplication

C'=D, 1. e. matrix multiplication is not always commutative.

However, it is associative, e.q., (AB)D = A(B D)
and distributive. i.e. (A+ B)C=AC+ BC




Example 5:

Given that

1 2 0
A=IQ3

2 1 0

and C = AB.
Determine C.

Determine D=BA, check if C=D or not.




Viultiplication

Product of matrix A with column a:
Example: How to get element d;:




Example 3:

Given that

1 2 0
A=|1 03) B =
2 1 0

5
5
6

and C = AB.
Determine C.




Multiplication
Product of matrix A with row a’;

Example: How to get elements 4, and d,:




Example 4:

Given that

A=(5 2 4) B:(?

and C = AB.
Determine C.




EXERCISE 2.1.3 Problems

|. Find the products AB and BA, if they exist, where

A=I2 B=3-22

3| -4 | [ O | -1

2. Find the matrix products AB and BA of the row
vector A=| 1|23 |,and the column vector B=| -

3. Prove that A(BC)=(AB)C where

A=I2 B=| O [ -I C= 15

-1 [ 3 2 (1|0




Trace of a Matrix

The trace of a (z x n) square matrix A Is the
of the elements on the main diagonal.

I}(A): Apr+Aoe+ ...+ A,




Determinants

The determinant det(A) or |A| of A can be
calculated for any (» x n) square matrix.




Determinants

(3 x 3) matrix




Example 6:

Given that

Determine det(A).




EXERCISE 2.1.4 Problems

|. Find the values of the traces and the determinants
of A and B where

0|42
4 |-2f-1
51113

| | 2 —

A= B=

-1 | 3

2. Show that det(AB)=det(A)det(B) where

A= 312 B="l¢

5| | 219

3. Show that det(A)= det(AT) where

1| 1]3

A= 5151

3(2]3




Inverse of a Matrix

A matrix € which fulfills the condition CA = I

for a square matrix A, is the inverse matrix A’
of A, i.e. AAT = I.

A1 exists if and only if det(A) = O.
Not all matrices have an inverse matrix.

Assume that A exists. If CA=1I then AC=1I
also holds.

A matrix is called orthogonal if A-'=AT,i.e. AAT=ATA=I




EXAMPLE

Inverse of a matrix A:

1] 2] 3
Find the inverse, if it exists of A, where A=|1]|3]5
(i) det A=3, det A+0 SRR
(i) (A-D) 1 (1/3)(-D*By=11/3
41213 T
Bii=det|{[3]s5]= det = ||
5 |12
[|5]12

(iii) (A-")12: (1/3)(-1)*2By,= -9/3

11]1-9] |

A'=1/3|7]1°]2] |Is it correct?
2 1-3] 1




EXERCISE 2.1.5 Problems

|. Determine the inverses of the following matrices:

d]0]o0 ol-1]0 olo] I
A=o[. 1o B=| oo C=]o]lo0
0olo] I 0|0]-1 ol1]o0
1 [-1]0 1] 1 o1 ]1
D= 1110 E= .1 F=[ o]
olo] I L {1 |- 1{1]o0

1 {210

2. Given that A= 7,15, determine A-! .




EXERCISE 2.1.5 Problems

1 [2(0
Given that A= 1,13 | determine A-! .
2 (-1(0
SOLUTION
/5] 0 | 2/5
A-l= 25| 0 |15
/15 1/3]2/15




