Theoretical Crystallography

International School on Fundamental Crystallography Sixth MaThCryst school in Latin America Workshop on the Applications of Group Theory in the Study of Phase Transitions

Bogotá, Colombia, 26 November - $1^{\text {st }}$ December 2018

MATRIX CALCULUS (brief revision)

Mois I. Aroyo
 Universidad del Pais Vasco, Bilbao, Spain

Universidad Euskal Herriko
del País Vasco Unibertsitatea

Some of the slides are taken from the presentation "Introduction to Matrix Algebra" of M. Rademeyer given at the School on Fundamental Crystallography, Bloemfontein, South Africa, 2010

What is a rrijitris?

Definition:

- A rectangular array of numbers
- in m rows
- and n columns
- is called an (Nin) matrix A

Use boldface italics upper case letters to indicate matrix, e.g. A, B, W.

Square Matrix:

An ($n \times n$) matrix \# rows = \# columns
$\left(\begin{array}{cccc}A_{11} & A_{12} & \ldots & A_{1 n} \\ A_{21} & A_{22} & \cdots & A_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n 1} & A_{n 2} & \cdots & A_{n n}\end{array}\right)$

Column Matrix:
An ($m \times 1$) matrix Row index changes

Row Matrix:
A ($1 \times n$) matrix
Column index changes

$$
\left(\begin{array}{llll}
A_{11} & A_{12} & \ldots & A_{1 n}
\end{array}\right)
$$

Index 1 is often omitted for column and row matrices.

Transposed Matrix A^{T}

Let \boldsymbol{A} be a $(m \times n)$ matrix
The ($n \times m$) matrix obtained from
$\boldsymbol{A}=\left(A_{i k}\right)$ by exchanging rows and colurinis is called the transposed matrix A^{T}.

$$
\boldsymbol{A}=\left(\begin{array}{lll}
1 & 0 & \overline{1} \\
2 & 4 & \overline{3}
\end{array}\right)
$$

Reminder: \bar{z} means $-z$

Example 1: Transposed Matirix

Given that

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
\overline{1} & 0 & 3 \\
2 & \overline{1} & 0
\end{array}\right)
$$

determine $\boldsymbol{A}^{\boldsymbol{\top}}$.

Symmetric Matrix

A square matrix is symmetric if $\boldsymbol{A}^{T}=\boldsymbol{A}$ i.e. if $A_{i k}=A_{k i}$ for any pair i, k.

Symmetric with respect to rraiis cliagonal

- Top left to bottom right

SKEW-SYMMETRIC MATRIX

$$
\boldsymbol{A}^{\mathrm{T}}=-\mathbf{A}
$$

If \boldsymbol{A} is a skewsymmetric matrix, then
$\mathrm{A}_{\mathrm{ii}}=0, \mathrm{i}=1,2,3$
as $\mathrm{A}_{\mathrm{ik}}=-\mathrm{A}_{\mathrm{ki}}$

Problems

I. Construct the transposed matrix of the (3 xI) row matrix:

I	3	4

2. Determine which of the following matrices are symmetric and which are skew-symmetric:

$\boldsymbol{A}=$| 3 | 0 |
| :--- | :--- |
| 0 | 2 |$\quad \boldsymbol{B}=$| 3 | 4 |
| :--- | :--- |
| -4 | 1 |$\quad \boldsymbol{C}=$| 2 | -1 |
| :---: | :---: |
| -1 | 1 |$\quad \boldsymbol{D}=$| 0 | 2 |
| :---: | :---: |
| -2 | 0 |$\quad \boldsymbol{E}=$| 0 | 0 |
| :--- | :--- |
| 1 | 0 |

$\boldsymbol{F}=(3) \quad \boldsymbol{G}=$| 0 | 1 | -2 |
| :---: | :---: | :---: |
| -1 | 0 | 3 |
| 2 | -3 | 0 |$\quad \boldsymbol{H}=$| 3 | 2 |
| :--- | :--- |
| 2 | 1 |
| 1 | 0 |$\quad \boldsymbol{J}=$| 0 | 0 |
| :--- | :--- |
| 0 | 0 |

Matrix Calculations

Multiplication with a number (scalar product): An $(m \times n)$ matrix \boldsymbol{A} is multiplied with a number λ by multiplying each element with λ :
$\boldsymbol{A}=\left(\begin{array}{cccc}A_{11} & A_{12} & \ldots & A_{1 n} \\ A_{21} & A_{22} & \ldots & A_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m 1} & A_{m 2} & \ldots & A_{m n}\end{array}\right) \longrightarrow \lambda \boldsymbol{A}=\left(\begin{array}{cccc}\lambda A_{11} & \lambda A_{12} & \ldots & \lambda A_{1 n} \\ \lambda A_{21} & \lambda A_{22} & \ldots & \lambda A_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda A_{m 1} & \vdots A_{m 2} & \ldots \lambda A_{m n}\end{array}\right)$

Example 2: Scalar product

Given that

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
\overline{1} & 0 & 3 \\
2 & \overline{1} & 0
\end{array}\right)
$$

determine $3 \boldsymbol{A}$.

Matrix addition and subtraction:

Let $A_{i k}$ and $B_{i k}$ be general elements of matrices \boldsymbol{A} and \boldsymbol{B}.
\boldsymbol{A} and \boldsymbol{B} must be of the same size (i.e. same number of rows and columns). Then the sum and the difference $\boldsymbol{A} \pm \boldsymbol{B}$ is:

$$
\begin{aligned}
\boldsymbol{C}=\boldsymbol{A} \pm \boldsymbol{B}= & \left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \ldots & A_{m n}
\end{array}\right) \pm\left(\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 n} \\
B_{21} & B_{22} & \ldots & B_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
B_{m 1} & B_{m 2} & \ldots & B_{m n}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
A_{11} \pm B_{11} & A_{12} \pm B_{12} & \ldots & A_{1 n} \pm B_{1 n} \\
A_{21} \pm B_{21} & A_{22} \pm B_{22} & \ldots & A_{2 n} \pm B_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} \pm B_{m 1} & A_{m 2} \pm B_{m 2} & \ldots & A_{m n} \pm B_{m n}
\end{array}\right)
\end{aligned}
$$

Element $C_{i k}$ of C is equal to the sum or difference of the elements $A_{i k}$ and $B_{i k}$ of \mathcal{A} and \boldsymbol{B} for any pair i, k :
$C_{i k k}=A_{i k} \pm B_{i k k}$

EXERCISE 2.I. 2

Problems

I. Find 3A-2B, where

$$
\mathbf{A}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 0 \\
\hline
\end{array} \quad \mathbf{B}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 0 & -4 \\
\hline
\end{array}
$$

2. Show that the sum of any matrix and its transpose is a symmetric matrix, i.e.

$$
\left(\boldsymbol{A}+\boldsymbol{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\boldsymbol{A}+\boldsymbol{A}^{\mathrm{T}}
$$

3. Show that the difference of any matrix and its transpose is a skew-symmetric matrix, i.e.

$$
\left(A-A^{\mathrm{T}}\right)^{\mathrm{T}}=-\left(\boldsymbol{A}-\boldsymbol{A}^{\mathrm{T}}\right)
$$

Matrix multiplication

The multiplication of two matrices is only defined when:

- the number $n_{\text {(lema) }}$ of columns of the left matrix is the same as
- the number of $m_{\text {(rrima) }}$ of rows on the right matrix
- no restriction on $m_{\text {(lema) }}$ or rows of the left matrix
- no restriction on $n_{\text {(rima) }}$ or rows of the right matrix
\# columns of left matrix = \# rows of right matrix

Multiplication

Product of two matrices \boldsymbol{A} and \boldsymbol{B} :

The matrix product $\mathbf{C}=\mathbf{A B}$ or

is defined by $C_{i k}=A_{i 1} B_{1 k}+A_{i 2} B_{2 k}+\ldots+A_{i j} B_{j k}+\ldots+A_{i r} B_{r k}$

Examples: Matrix Multiplication

$$
\begin{aligned}
& \text { If } \boldsymbol{A}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \text { and } \boldsymbol{B}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \text { then } \boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \boldsymbol{D}=\boldsymbol{B} \boldsymbol{A}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$C \neq D$, i.e. matrix multiplication is not always commutative. However, it is associative, e.g., $(\boldsymbol{A} \boldsymbol{B}) D=\boldsymbol{A}(\boldsymbol{B} D)$ and distributive, i.e. $(\boldsymbol{A}+\boldsymbol{B}) C=A C+B C$.

Example 5: Multijplication

Given that

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
\overline{1} & 0 & 3 \\
2 & \overline{1} & 0
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 2 & 2 \\
3 & 2 & 1
\end{array}\right)
$$

and $\boldsymbol{C}=\boldsymbol{A B}$.
Determine \boldsymbol{C}.
Determine $\boldsymbol{D}=\boldsymbol{B A}$, check if $\mathbf{C}=\boldsymbol{D}$ or not.

Multiplication

Product of matrix \boldsymbol{A} with column \boldsymbol{a} :

Example: How to get element d_{1} :

$$
d_{1}=A_{11} a_{1}+A_{12} a_{2}+\ldots \ldots+A_{1 k} a_{k}+\ldots \ldots+A_{1 n} a_{n}
$$

Example 3: Multijpliceation

Given that
$A=\left(\begin{array}{ccc}1 & 2 & 0 \\ \overline{1} & 0 & 3 \\ 2 & \overline{1} & 0\end{array}\right) \quad B=\left(\begin{array}{c}3 \\ \overline{5} \\ 6\end{array}\right)$
and $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$.
Determine \mathbf{C}.

Multiplication Product of matrix A with row $a^{T \text {; }}$

Example: How to get elements d_{1} and d_{2} :

$d_{1}=a_{1} A_{11}+a_{2} A_{21}+\ldots \ldots+a_{k} A_{k 1}+\ldots \ldots+a_{n} A_{m 1}$

$$
d_{2}=a_{1} A_{12}+a_{2} A_{22}+\ldots \ldots+a_{k} A_{k 2}+\ldots \ldots+a_{n} A_{m 2}
$$

Example 4: Mulutiplication

Given that

$$
A=\left(\begin{array}{lll}
\overline{5} & 2 & 4
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 2 & 2 \\
3 & 2 & 1
\end{array}\right)
$$

and $\boldsymbol{C}=\boldsymbol{A B}$.
Determine \boldsymbol{C}.

Problems

I. Find the products $\mathbf{A B}$ and $\mathbf{B A}$, if they exist, where

$$
\boldsymbol{A}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & -4 \\
\hline
\end{array}
$$

$\boldsymbol{B}=$| 3 | -2 | 2 |
| :---: | :---: | :---: |
| 1 | 0 | -1 |

2. Find the matrix products $\mathbf{A B}$ and $\mathbf{B A}$ of the row vector $\boldsymbol{A}=$\begin{tabular}{|l|l|l}
1 \& 2 \& 3

\hline

 , and the column vector $\boldsymbol{B}=$

\hline-2

\hline 4

\hline 1

\hline
\end{tabular}

3. Prove that $\boldsymbol{A}(\mathbf{B C})=(\boldsymbol{A B}) \mathbf{C}$ where

$$
\boldsymbol{A}=\begin{array}{|c|c|}
\hline 1 & 2 \\
\hline-1 & 3 \\
\hline
\end{array} \quad \boldsymbol{B}=\begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline 2 & 1 & 0 \\
\hline
\end{array} \quad \mathbf{C}=\begin{array}{|l|l|}
\hline 1 & -1 \\
\hline 3 & 2 \\
\hline 2 & 1 \\
\hline
\end{array}
$$

Trace of a Matrix

The trace of a ($n \times n$) square matrix \boldsymbol{A} is the sulss of the elements on the main diagonal.

$$
\operatorname{tr}(\boldsymbol{A})=A_{11}+A_{22}+\ldots+A_{n n}
$$

Determinants

The determinant $\operatorname{det}(\boldsymbol{A})$ or $|\boldsymbol{A}|$ of \boldsymbol{A} can be calculated for any ($n \times n$) square matrix.

$$
\begin{gathered}
(2 \times 2) \text { matrix } \\
\text { Let } \boldsymbol{A}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{2} & A_{22}
\end{array}\right) \\
\operatorname{det}(\boldsymbol{A})=\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right| \\
\operatorname{det}(\boldsymbol{A})=A_{11} A_{22}-A_{12} A_{21}
\end{gathered}
$$

Determinants

$$
(3 \times 3) \text { matrix }
$$

$$
\operatorname{det}(\boldsymbol{B})=\left|\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right|
$$

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{B})= & \begin{array}{|}
B_{11} B_{22} B_{33} & +B_{12} B_{23} B_{31} & +B_{13} B_{21} B_{32} \\
& -B_{11} B_{23} B_{32}-B_{12} B_{21} B_{33}-B_{13} B_{22} B_{3} \\
\hline
\end{array}
\end{aligned}
$$

Example 6: Determinanit

Given that
$\boldsymbol{A}=\left(\begin{array}{ccc}1 & 2 & 0 \\ \overline{1} & 0 & 3 \\ 2 & \overline{1} & 0\end{array}\right)$
Determine $\operatorname{det}(\boldsymbol{A})$.

Problems

I. Find the values of the traces and the determinants of \boldsymbol{A} and \boldsymbol{B} where

$$
\boldsymbol{A}=\begin{array}{|c|c|}
\hline 1 & 2 \\
\hline-1 & 3 \\
\hline
\end{array} \quad \boldsymbol{B}=\begin{array}{|c|c|c|}
\hline 0 & 4 & 2 \\
\hline 4 & -2 & -1 \\
\hline 5 & 1 & 3 \\
\hline
\end{array}
$$

2. Show that $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})$ where

$$
\boldsymbol{A}=\begin{array}{|l|l|}
\hline 3 & 2 \\
\hline 5 & 1 \\
\hline
\end{array} \quad \boldsymbol{B}=\begin{array}{|l|l|}
\hline 1 & 6 \\
\hline 2 & 9 \\
\hline
\end{array}
$$

3. Show that $\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{\boldsymbol{T}}\right)$ where

$$
\boldsymbol{A}=\begin{array}{|l|l|l|}
\hline 1 & 1 & 3 \\
\hline 2 & 2 & 2 \\
\hline 3 & 2 & 3 \\
\hline
\end{array}
$$

Inverse of a Matrix

A matrix \mathbf{C} which fulfills the condition $\mathbf{C A}=\boldsymbol{I}$ for a square matrix A, is the inverse matrix A^{-1} of \boldsymbol{A}, i.e. $A A^{-1}=I$.
A^{-1} exists if and only if $\operatorname{det}(\boldsymbol{A}) \neq 0$.
Not all matrices have an inverse matrix.

Assume that A^{-1} exists. If $C A=I$ then $A C=I$ also holds.

A matrix is called orthogonal if $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}$, i.e. $\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\boldsymbol{I}$

EXAMPLE

Inverse of a matrix \mathbf{A} :
 $\left(\boldsymbol{A}^{-1}\right)_{\mathrm{ik}}=(\operatorname{det} \boldsymbol{A})^{-1}(-\mathrm{I})^{\mathrm{i}+\mathrm{k}} \boldsymbol{B}_{\mathrm{ki}}$

Find the inverse, if it exists of \boldsymbol{A}, where $\boldsymbol{A}=$| | | 2 |
| :--- | :--- | :--- |
| | 3 | 3 |
| | 3 | 5 |
| | 5 | 12 |
| (i) $\operatorname{det} \boldsymbol{A}=3$, $\operatorname{det} \boldsymbol{A} \neq 0$ | | |

(i) $\operatorname{det} \boldsymbol{A}=3, \operatorname{det} \boldsymbol{A} \neq 0$
(ii) $\left(\boldsymbol{A}^{-1}\right) \|:(1 / 3)(-1)^{1+\mid} \boldsymbol{B}_{\|}=11 / 3$

$$
\boldsymbol{B}_{I I}=\operatorname{det} \begin{array}{|l|l|l|}
\hline & 2 & 3 \\
\hline & 3 & 5 \\
\hline & 5 & 12 \\
\hline
\end{array}=\operatorname{det} \begin{array}{|c|c|}
\hline 3 & 5 \\
\hline 5 & 12 \\
\hline
\end{array}=I I
$$

(iii) $\left(\boldsymbol{A}^{-1}\right)_{12}:(I / 3)(-I)^{1+2} \boldsymbol{B}_{21}=-9 / 3$

$$
\boldsymbol{A}^{-I}=1 / 3 \begin{array}{|c|c|c|}
\hline 11 & -9 & 1 \\
\hline-7 & 9 & -2 \\
\hline 2 & -3 & 1 \\
\hline
\end{array}
$$

Is it correct?

Problems

I. Determine the inverses of the following matrices:

$A=$| -1 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | -1 | 0 |
| 0 | 0 | 1 |

$\boldsymbol{B}=$| 0 | -1 | 0 |
| :---: | :---: | :---: |
| 1 | 0 | 0 |
| 0 | 0 | -1 |

$\boldsymbol{C}=$| 0 | 0 | 1 |
| :--- | :--- | :--- |
| 1 | 0 | 0 |
| 0 | 1 | 0 |

$\boldsymbol{D}=$| I | $-I$ | 0 |
| :---: | :---: | :---: |
| I | I | 0 |
| 0 | 0 | 1 |

$E=$| -1 | 1 | 1 |
| :---: | :---: | :---: |
| 1 | -1 | 1 |
| 1 | 1 | -1 |

$\boldsymbol{F}=$| 0 | I | I |
| :--- | :--- | :--- |
| I | 0 | I |
| I | I | 0 |

2. Given that $\boldsymbol{A}=$| 1 | 2 | 0 |
| :---: | :---: | :---: |
| -1 | 0 | 3 |
| 2 | -1 | 0 | , determine \boldsymbol{A}^{-1}.

EXERCISE 2.I. 5

Problems

Given that $\boldsymbol{A}=$| 1 | 2 | 0 |
| :---: | :---: | :---: |
| -1 | 0 | 3 |
| 2 | -1 | 0 |, , determine \boldsymbol{A}^{-1}.

SOLUTION

$$
\mathbf{A}-I=\begin{array}{|c|c|c|}
\hline I / 5 & 0 & 2 / 5 \\
\hline 2 / 5 & 0 & -I / 5 \\
\hline I / I 5 & I / 3 & 2 / 15 \\
\hline
\end{array}
$$

