

International Union of Crystallography Commission on Mathematical and Theoretical Crystallography

International School on Fundamental Crystallography Sixth MaThCryst school in Latin America Workshop on the Applications of Group Theory in the Study of Phase Transitions

Bogotá, Colombia, 26 November - 1st December 2018

MATRIX CALCULUS (brief revision)

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Some of the slides are taken from the presentation "Introduction to Matrix Algebra" of **M. Rademeyer** given at the School on Fundamental Crystallography, Bloemfontein, South Africa, 2010

What is a matrix?

Definition:

- A rectangular array of numbers
- in *m* rows
- and n columns
- is called an (m x n) matrix A

Use boldface italics upper case letters to indicate matrix, e.g. A, B, W.

$$\boldsymbol{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix}.$$

An item in a matrix is called an entry or element

<u>Square Matrix:</u> An (*n* × *n*) matrix # rows = # columns

 $\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}$

<u>Column Matrix:</u> An (*m* x *I*) matrix Row index changes

 A_{11} A_{21}

<u>Row Matrix:</u> A (1 x n) matrix Column index changes

$$(A_{11} \quad A_{12} \quad \dots \quad A_{1n})$$

Index 1 is often omitted for column and row matrices.

Transposed Matrix A^T

Let **A** be a $(m \times n)$ matrix The $(n \times m)$ matrix obtained from $A = (A_{ik})$ by exchanging rows and columns is called the transposed matrix A^{T} .

$$A = \begin{pmatrix} 1 & 0 & \bar{1} \\ 2 & 4 & \bar{3} \end{pmatrix} \qquad A^{\mathrm{T}} = \begin{pmatrix} 1 & 2 \\ 0 & 4 \\ \bar{1} & \bar{3} \end{pmatrix}$$

Reminder: \overline{z} means -z

Example 1: Transposed Matrix

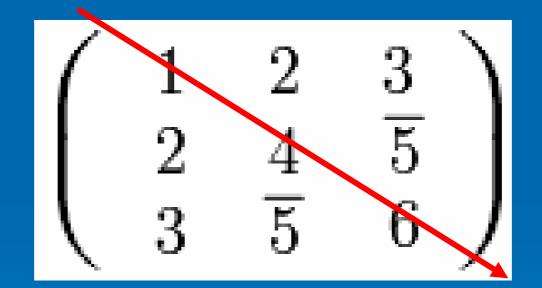
Given that

$$A = \begin{pmatrix} 1 & 2 & 0 \\ \bar{1} & 0 & 3 \\ 2 & \bar{1} & 0 \end{pmatrix}$$

determine **A**^T

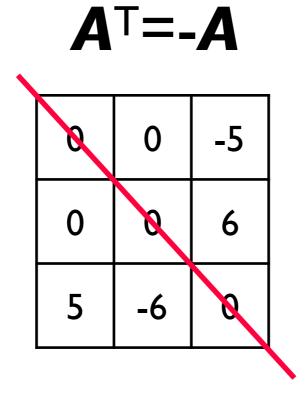
Symmetric Matrix

A square matrix is symmetric if $A^T = A$ i.e. if $A_{ik} = A_{ki}$ for any pair *i*,*k*.



Symmetric with respect to main diagonal - Top left to bottom right

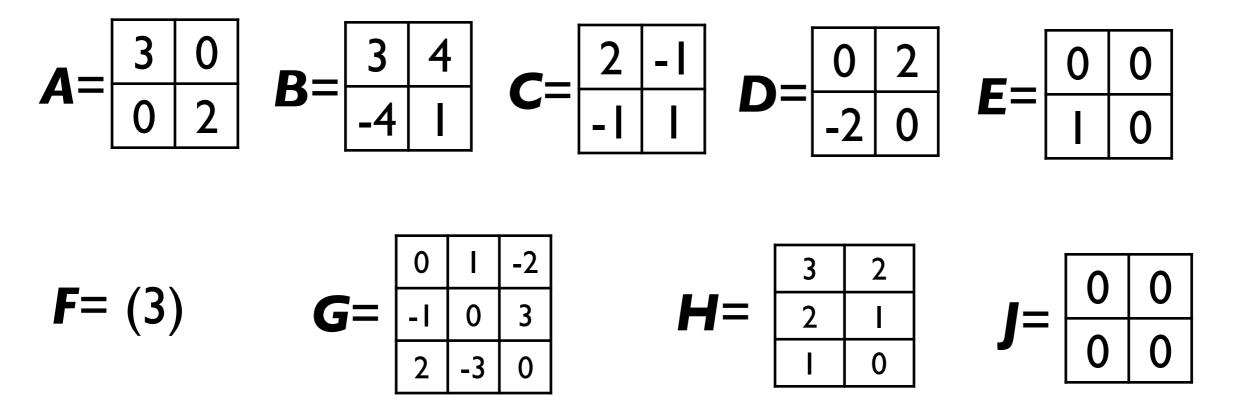
SKEW-SYMMETRIC MATRIX



If **A** is a skewsymmetric matrix, then

 $A_{ii}=0, i=1,2,3$ as $A_{ik}=-A_{ki}$ I. Construct the transposed matrix of the (3xI) row matrix:

2. Determine which of the following matrices are symmetric and which are skew-symmetric:



Matrix Calculations

<u>Multiplication with a number (scalar product)</u>: An $(m \times n)$ matrix **A** is multiplied with a number λ by multiplying each element with λ :

$$\boldsymbol{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \longrightarrow \boldsymbol{\lambda} \boldsymbol{A} = \begin{pmatrix} \lambda A_{11} & \lambda A_{12} & \dots & \lambda A_{1n} \\ \lambda A_{21} & \lambda A_{22} & \dots & \lambda A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda A_{m1} & \lambda A_{m2} & \dots & \lambda A_{mn} \end{pmatrix}$$

Example 2: Scalar product

Given that

$$A = \begin{pmatrix} 1 & 2 & 0 \\ \bar{1} & 0 & 3 \\ 2 & \bar{1} & 0 \end{pmatrix}$$

determine 3**A**

Matrix addition and subtraction:

Let A_{ik} and B_{ik} be general elements of matrices **A** and **B**. **A** and **B** must be of the same size (i.e. same number of rows and columns). Then the sum and the difference **A** \pm **B** is:

$$C = A \pm B = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \pm \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1n} \\ B_{21} & B_{22} & \dots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \dots & B_{mn} \end{pmatrix} = \\ = \begin{pmatrix} A_{11} \pm B_{11} & A_{12} \pm B_{12} & \dots & A_{1n} \pm B_{1n} \\ A_{21} \pm B_{21} & A_{22} \pm B_{22} & \dots & A_{2n} \pm B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} \pm B_{m1} & A_{m2} \pm B_{m2} & \dots & A_{mn} \pm B_{mn} \end{pmatrix}$$

Element C_{ik} of **C** is equal to the sum or difference of the elements A_{ik} and B_{ik} of **A** and **B** for any pair *i*,*k*: $C_{ik} = A_{ik} \pm B_{ik}$

Problems

I. Find 3**A**-2**B**, where
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 3 \\ 0 & -4 \end{bmatrix}$$

2. Show that the sum of any matrix and its transpose is a symmetric matrix, *i.e.*

 $(\mathbf{A} + \mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A} + \mathbf{A}^{\mathsf{T}}$

3. Show that the difference of any matrix and its transpose is a skew-symmetric matrix, *i*.e.

 $(\mathbf{A} - \mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = -(\mathbf{A} - \mathbf{A}^{\mathsf{T}})$

Matrix multiplication

The multiplication of two matrices is only defined when:

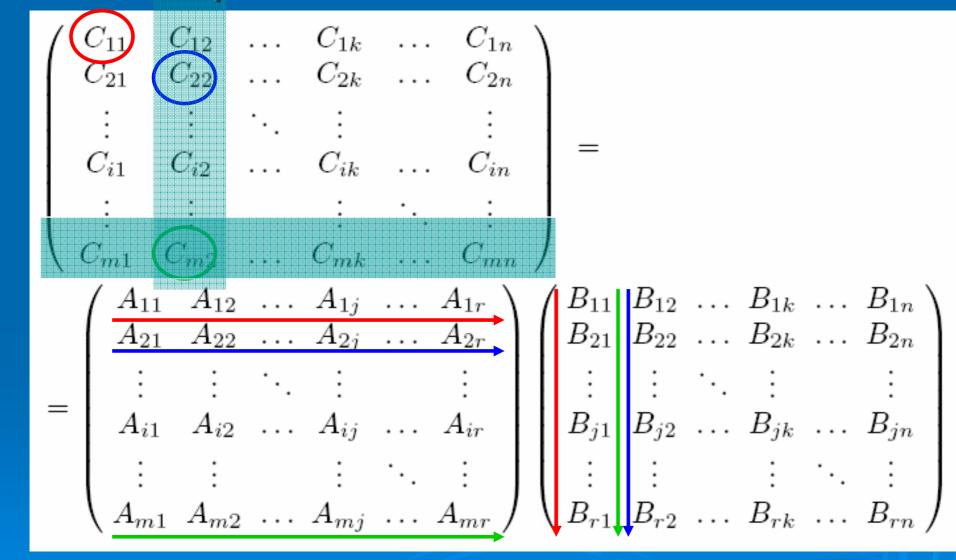
- the number n_(lema) of columns of the *left matrix* is the same as
- the number of $m_{(rima)}$ of rows on the *right matrix*
- no restriction on $m_{(lema)}$ or rows of the left matrix
- no restriction on $n_{(rima)}$ or rows of the *right matrix*

columns of left matrix = # rows of right matrix

Multiplication

Product of two matrices A and B:

The matrix product C = AB or



is defined by $C_{ik} = A_{i1}B_{1k} + A_{i2}B_{2k} + \ldots + A_{ij}B_{jk} + \ldots + A_{ir}B_{rk}$

Examples: Matrix Multiplication

If
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
then $C = A B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $D = B A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

 $C \neq D$, *i. e.* matrix multiplication is not always commutative. However, it is associative, *e. g.*, (A B) D = A (B D)and distributive, *i. e.* (A + B) C = A C + B C

Example 5: Multiplication

Given that

$$A = \begin{pmatrix} 1 & 2 & 0 \\ \bar{1} & 0 & 3 \\ 2 & \bar{1} & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

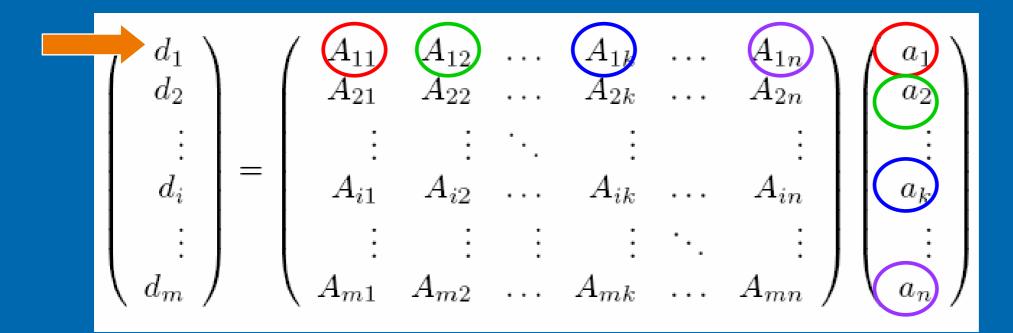
and C = AB. Determine C.

Determine **D**=**BA**, check if **C**=**D** or not.

<u>Multiplication</u>

Product of matrix A with column a:

Example: How to get element d_1 :



 $d_1 = A_{11} a_1 + A_{12} a_2 + \dots + A_{1k} a_k + \dots + A_{1n} a_n$

Example 3: Multiplication

Given that

$$A = \begin{pmatrix} 1 & 2 & 0 \\ \bar{1} & 0 & 3 \\ 2 & \bar{1} & 0 \end{pmatrix} \qquad B = \begin{pmatrix} \frac{3}{5} \\ \frac{5}{6} \end{pmatrix}$$

and C = AB. Determine C.

<u>Multiplication</u> Product of matrix A with row a^{T} :

Example: How to get elements d_1 and d_2 :

 $\begin{pmatrix}
A_{11}A_{12} \dots A_{1i} \dots A_{1n} \\
A_{21}A_{22} \dots A_{2i} \dots A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{k1}A_{k2} \dots A_{ki} \dots A_{kn} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m}A_{m2} \dots A_{mi} \dots A_{mn}
\end{pmatrix}$ $(d_1 \ d_2 \dots d_i \dots d_n) = (a_1 a_2 \dots a_k \dots a_m)$ $d_1 = a_1 A_{11} + a_2 A_{21} + \dots + a_k A_{k1} + \dots + a_n A_{m1}$ $d_2 = a_1 A_{12} + a_2 A_{22} + \dots + a_k A_{k2} + \dots + a_n A_{m2}$

Example 4: Multiplication

Given that

$$A = (\overline{5} \ 2 \ 4) \qquad B = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

and C = AB. Determine C. I. Find the products **AB** and **BA**, if they exist, where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 3 & -2 & 2 \\ 1 & 0 & -1 \end{bmatrix}$$

2. Find the matrix products **AB** and **BA** of the row vector $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, and the column vector $\mathbf{B} = \begin{bmatrix} -2 & -2 & -2 \\ 4 & -2 & -2 \end{bmatrix}$

3. Prove that A(BC)=(AB)C where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ 2 & 1 \end{bmatrix}$$

Trace of a Matrix

The trace of a $(n \times n)$ square matrix **A** is the sum of the elements on the main diagonal.

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}$$

$$tr(A) = A_{11} + A_{22} + \dots + A_{nn}$$

Determinants The determinant det(A) or |A| of A can be calculated for any ($n \ge n$) square matrix.

 (2×2) matrix

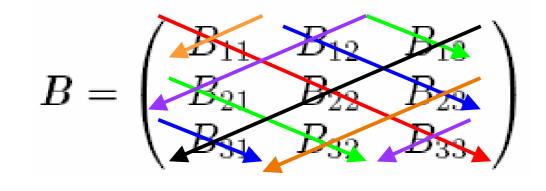
Let
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

$$\det(\mathbf{A}) = \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix}$$

 $\det(\mathbf{A}) = A_{11}A_{22} - A_{12}A_{21}$

Determinants

 (3×3) matrix



 $\det(\boldsymbol{B}) = \begin{vmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{vmatrix}$

$$\det(B) = B_{11}B_{22}B_{33} + B_{12}B_{23}B_{31} + B_{13}B_{21}B_{32} - B_{11}B_{23}B_{32} - B_{12}B_{21}B_{33} - B_{13}B_{22}B_{31}$$

Example 6: Determinant

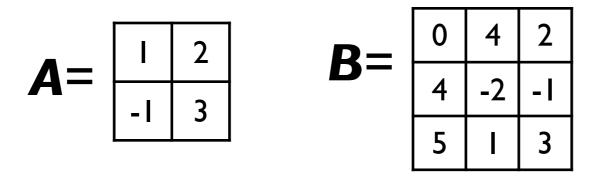
Given that

$$A = \begin{pmatrix} 1 & 2 & 0 \\ \bar{1} & 0 & 3 \\ 2 & \bar{1} & 0 \end{pmatrix}$$

Determine det(**A**).

EXERCISE 2.1.4

I. Find the values of the traces and the determinants of **A** and **B** where



2. Show that det(AB) = det(A)det(B) where

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 1 & 6 \\ 2 & 9 \end{bmatrix}$$

3. Show that $det(\mathbf{A}) = det(\mathbf{A}^{T})$ where

$$\mathbf{A} = \begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{3} \\ 2 & 2 & 2 \\ 3 & 2 & 3 \end{bmatrix}$$

Inverse of a Matrix

A matrix **C** which fulfills the condition CA = Ifor a square matrix **A**, is the inverse matrix A^{-1} of **A**, i.e. $AA^{-1} = I$.

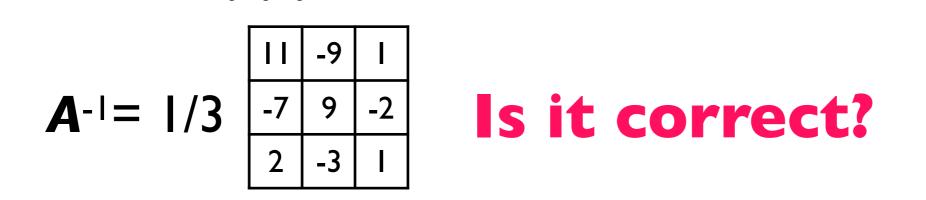
 A^{-1} exists if and only if det(A) $\neq 0$. Not all matrices have an inverse matrix.

Assume that A^{-1} exists. If CA = I then AC = I also holds.

A matrix is called orthogonal if $A^{-1}=A^{T}$, i.e. $AA^{T}=A^{T}A=I$

EXAMPLE Inverse of a matrix A: $(A^{-1})_{ik} = (\det A)^{-1} (-1)^{i+k} B_{ki}$ 2 3 Find the inverse, if it exists of A, where A=3 5 5 12 (i) det A=3, det $A\neq 0$ (ii) $(\mathbf{A}^{-1})_{11}$: $(1/3)(-1)^{1+1}\mathbf{B}_{11} = 11/3$ $\mathbf{B}_{11} = \det$ 5 12

(iii) $(\mathbf{A}^{-1})_{12}$: $(1/3)(-1)^{1+2}\mathbf{B}_{21} = -9/3$



EXERCISE 2.1.5

Problems

I. Determine the inverses of the following matrices:



2. Given that **A**=

EXERCISE 2.1.5

Problems

Given that
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 3 \\ 2 & -1 & 0 \end{bmatrix}$$
, determine A^{-1} .

SOLUTION $A^{-1} =$ $\frac{1/5}{2/5}$ $\frac{2/5}{2/5}$ 1/15 1/3 2/15