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SrTiO3 

Pm-3m --- I4/mcm (a+b, -a+b,2c;1/2,1/2,1/2)    

tilting of octahedra 



SrTiO3 

Pm-3m --- tetragonal, centered I and supercell (a+b, -a+b, 2c)    

Possible space groups ? Let us apply program SUBGROUPS…. 

(example 2 in the Tutorial of SUBGROUPS) 



SrTiO3 

Pm-3m --- tetragonal, centered I and supercell (a+b, -a+b,2c)    

Possible space groups of  
maximal symmetry? 

Apply program SUBGROUPS…. 

There are four different tetragonal space groups of maximal symmetry, two of them of 
type I4/mcm: 

As in many other cases, the symmetry is maximal for the  
supercell observed… 



SrTiO3 

Pm-3m --- tetragonal, centered I and supercell (a+b, -a+b,2c)    

Which subgroup 
of type I4/mcm is  
the one realized in SrTiO3? Let us use Structure Relations…. 

or use PSEUDO…. same results?  



SrTiO3 

Pm-3m ! tetragonal, centered I and supercell (a+b, -a+b,2c; 1/2,1/2,1/2)    

Active irrep?  
use  link to Get_irreps in 
SUBGROUPS output:   
R5- with k=(1/2,1/2,1/2) 

Use SUBGROUPS in its 
option where the input can 
be a k-vector 
instead of a supercell and 
filtered for the irrep R5-  

Other possible symmetries for  
the same active irrep R5-? 

Possible 
symmetries 
resulting from 
a R5- distortion 



Prediction of probable symmetries for compounds of a family, or for the same 
compound at different conditions due to a common active irrep, with the order parameter 
taking different directions: 

Example: Perovskites are known to have systematically a soft or unstable mode with 
irrep R5-: 

isotropy subgroups of R5-: 

G           ? 
possible isotropy subgroups for a given active irrep? 

irrep kernel  

irrep epikernels  



I4/mcm (a+b,-a+b,2c;1/2,1/2,1/2) 

SrTiO3 CeAlO3  

R-3c (a-c,-a+b,2a+2b+2c;1/2,1/2,1/2) 

OP direction: (a,0,0) OP direction: (a,a,a) 

Phases resulting from different combinations of R5- modes 
(different OP directions) 



LaCoO3  

C2/c (a+2b+c,a-c,a+c;1/2,0,0) 

OP direction: (a,a,b) 

isotropy subgroups of irrep R5- 
(irrep epikernels and kernels) 

let us obtain a starting structural model of LaCoO3 with TRANSTRU… 



Von Neumann principle: 

•   all variables/parameters/degrees of freedom compatible with the  
symmetry will be present in the total distortion  

•  Tensor crystal properties are constrained by the point group 
symmetry of the crystal  
    (some coefficients can be forced to be identically cero). 

•  Reversely: any tensor property allowed by the point group 
symmetry can exist (large or small, but it is not forced to be 
cero) 

Consequences of symmetry 



Origin of ferroic properties: multistability 

Ferroic structure:  

 “distorted” structure with respect to a configuration 

 with a higher point group symmetry 

Ferroic domains:  

 equivalent crystal tensors with different orientations 

related by lost point group operations 

Ferroic properties:  

 require the symmetry break of the point-group 

symmetry between distorted and undistorted configurations 

FERROIC SPECIES: 
The characterization of the ferroic properties requires 
to know the two point group symmetries: the one of the 
ferroic structure, and also of the related high-symmetry 
configuration. EXAMPLE:   mmmFmm2 



Some examples of ferroic species and corresponding switchable 
spontaneous crystal tensor quantities 

mmmFmm2 

 ε1 0  0  
 0  ε2 0 
 0  0  ε3 

 ε1 0  0  
 0  ε2 0 
 0  0  ε3 

strain 

polariz. (0,0,0) (0,0,Pz) 
ferroelect. 

mmmF112/m 

 ε1 0  0  
 0  ε2 0 
 0  0  ε3 

 ε1 ε6 0  
 ε6 ε2 0 
 0  0  ε3 

strain 

polariz. (0,0,0) (0,0,0) 
ferroelastic 

 422F222 

 ε1 0  0  
 0  ε1 0 
 0  0  ε3 

 ε1 0 0  
 0 ε2 0 
 0  0  ε3 

strain 

polariz. (0,0,0) (0,0,0) 
ferroelastic 

spont. strain: εs= ε1- ε2  

m-3mFR3m 

 ε 0  0  
 0  ε 0 
 0  0  ε 

 ε ε4 ε4  
 ε4 ε  ε4 
 ε4 ε4 ε

strain 

polariz. (0,0,0) (P,P,P) 

and ferroelastic 
ferroelectric 



Not to confuse in a ferroic phase !: 

•  Linear response properties (giant or not!) 

•  switching properties (necessarily non-linear) 

Q1 

Q2 

G 

F 

We need to know only the symmetry of the phase. 

We need to know also the symmetry of the “parent”  
phase. 

G = F + g3F + g3F + ... + gsF     

gn(Q1 ... | Q(s)
1 ....)  



Multistability: enumeration of distinct domains: 

distinct Ferroic states: only if the symmetry operations g contain  
different rotational parts: 

G            F 
 distinct domains/states: {Q’} T(g)Q =  Q’ 

Number of distinct equivalent states = Order of G 
Order of F 

We need to know the irrep  
of the order parameter 

Number of distinct ferroic states = Order of PG 

Order of PF 

Two levels of knowledge of the symmetry of a distorted phase: 
1) pair of points groups: (PG,PF) 

2) space group G + active irrep(s) + plus direction order parameter(s) Q 

(Ferroic species) 



Hierarchy of distortion modes:  

Von Neumann principle:  
all modes compatible with the symmetry will be present in the total distortion …. 

But not all with the same weight !: 

primary mode(s): unstable  

secondary modes: induced by the presence of the primary one(s).  

it drives  the phase transition and dictates 
the phase symmetry  

order parameter 

much weaker in 
general 

they are all modes compatible with the 
phase symmetry. They only break the 
the symmetry to some supergroup. 

secondary distortion modes are in general not unstable! 



½  κ2 Q2  + 

Example of a (free)  energy map with 
primary (Q1) and secondary (Q2) 
distortion modes: 

Q2 

Q1 
E = Eo + ½  κ1 Q1 + 2 2  γ Q1 Q2 + 

κ1<0 κ2>0 
3 

Anharmonic allowed coupling 

Equivalent ferroic stable structures 

κ1<0 

κ2>0 

Q2 
equil. = - (γ /k2) Q1 

3 

Hierarchy of spontaneous modes/variables 

faintness index 



Equivalent ferroic states  

gn(Q1,...,Qm | Q(s)
1,...,Q(s)

ms )  

(Q1,...,Qm | Q(s)
1,...,Q(s)

ms )  

gn 

In general a ferroic state (domain) is given by the values of all spontaneous quantities: 
order parameter(s) secondary spontaneous parameters  

G = F + g3F + g3F + ... + gsF     

Coset decomposition for a symmetry break with respect to a parent phase of symmetry G: 

secondary spontaneous parameter 

Number of macroscopically  distinct ferroic states = index= 
Order of PG 

Order of PF 

(point groups) 

gn(Q1 ... | Q(s)
1 ....) = (-Q1 ... | -Q(s)

1 ....)   

Q1 

Q(s)
1 

Switching a secondary small parameter will produce 
in this case the switching of the large primary one ….. 



Exercise  1 (Example 2 of tutorial of SUBGROUPS)    

A	
   structure	
   has	
   symmetry	
   Pnma.	
   At	
   lower	
   temperatures,	
   a	
   phase	
   transition	
  
happens,	
   and	
  diffraction	
   experiments	
   show	
   that	
   superstructure	
   re9lections	
   at	
  
points	
   (h,	
   k,	
   l	
   +	
   1/2	
   )	
   appear,	
   indicating	
   the	
   duplication	
   of	
   the	
   c	
   parameter,	
  
while	
  keeping	
  an	
  orthorhombic	
  lattice.	
  
(i).	
   Assuming	
   a	
   group-­‐subgroup	
   related	
   transition	
   and	
   using	
   SUBGROUPS,	
  
predict	
  the	
  only	
  two	
  possible	
  space	
  groups	
  of	
  this	
  low-­‐temperature	
  phase,	
  and	
  
the	
  transformation	
  matrix	
  relating	
  it	
  with	
  the	
  parent	
  space	
  group	
  Pnma.	
  	
  
(ii).	
   What	
   is	
   the	
   wave	
   vector	
   associated	
   with	
   the	
   order	
   parameter	
   of	
   this	
  
transition?	
  
(iii)	
  Using	
  the	
  Get_irreps	
  link	
  within	
  SUBGROUPS	
  determine	
  if	
  the	
  space	
  groups	
  
determined	
  in	
  (i)	
  are	
  isotropy	
  subgroups	
  of	
  an	
  irrep,	
  and	
  in	
  each	
  case,	
  identify	
  
the	
  label	
  of	
  the	
  active	
  primary	
  irrep	
  	
  of	
  the	
  transition.	
  	
  
(iv)	
  From	
  the	
  output	
  of	
  Get_irreps,	
   in	
  both	
  cases	
   identify	
   the	
   irrep	
  associated	
  
with	
  a	
  secondary	
  polar	
  distortion	
  mode.	
  
(v)	
   Determine	
   using	
   SUBGROUPS	
   all	
   the	
   possibles	
   symmetries	
   that	
   could	
  
happen	
   in	
  a	
  phase	
   transition	
  with	
   this	
  wave	
  vector,	
  under	
   the	
  constraint	
   that	
  
the	
  Landau	
  assumption	
  is	
  ful9illed	
  (the	
  order	
  parameter	
  transforms	
  according	
  
to	
  a	
  single	
  irrep).	
  



c 

b 

Amm2 – BaTiO3: strain as secondary mode/variable 

P 

P P 

P 

εyz  < 0 

-εyz > 0 

Proper ferroelectric 
Improper ferroelastic 

One can turn 90º the polarization switching the strain with a stress … 



Ferroic properties Amm2- BaTiO3 

One can switch a secondary mode: 

 By means of an electric field, we switch a non-polar degree of freedom.... 

and viceversa.   

Spontaneous quantities (with respect to cubic Pm-3m) in 
macroscopic tensors:  

Polarization (ferroelectric) – proper (order parameter) 
Strain (ferroelastic) – improper (not order parameter) 



To know which is the “proper” ferroic property, one has to identify the 
order parameter symmetry (irrep of G) 

General Rules of a phase transition with symmetry break 

To know which is the symmetry F of the distorted phase, one can then use 
the invariance equation: 

G           F? for a given symmetry break 

T[g] Q =  Q  g belongs to F 

Knowing the pair of symmetries (G,F) is sufficient to predict all ferroic properties (but 
not their magnitudes!).  

secondary spontaneous ferroic variables (“improper” ferroic properties): 

X ~  F(n)[Q1,…,Qn]  

Polynomial of order n (faintness index) 

energy coupling:  X.F(n)[Q1,…Qn]  

matrix irrep 

T[g] Q =  Q’  with g belonging to G, but not F Distinct ferroic states obtained by: 



An “improper”  ferroelectric (and ferroelastic)  -  Gd2(MoO4)2 

A Polar (ferroelectric) mode as a secondary mode 

P421m Pba2 
160 C 

(Z=2) (Z=4) cell duplication 

P421m 

Pba2 

Cmm2 

Γ3 (B2) 
M2+M4 

primary mode 

M=( 1/2, 1/2, 0) 

QM2M4= 1.6191 Å 

QΓ3   = 0.0716 Å 

secondary  
mode 

( 42m ------  mm2) 

polar mode/polarization 

antiferrodistortive mode (multiplies the unit cell) 
         wave vector ≠ 0 

Pz 



Ferroelectric Domains in Amm2 BaTiO3 

Number of domains = 48/4=12 

12 eq. directions for the order parameter:  

Order of m-3m = 48 

Amm2: Q(0,1/√2,1/√2) 

(m-3m, mm2) 
Pm-3m: 3-dim order parameter 
irrep T1u  (vector representation) 

Order of mm2 = 4 
P 

P P 

P 

(0,1/√2,1/√2) 
(0,-1/√2,1/√2) 
(0,-1/√2,-1/√2) 
(0,1/√2,-1/√2) 

(1/√2,0,1/√2) 
(-1/√2,0,1/√2) 
(1/√2,0,-1/√2) 
(1/√2,0,-1/√2) 

(1/√2,1/√2,0) 
(-1/√2,1/√2,0) 
(-1/√2,-1/√2,0) 
(1/√2,-1/√2,0) 



Pseudo-proper ferroic properties: the case of ferroelectric KDP 

I-42d           Fdd2 ( -42m ------  mm2) 

No cell multiplication 
(order parameter k=0) 

F

two possibilities: 

Pz order parameter –  εxy secondary 

Pz secondary –  εxy order parameter 

Proper ferroelect. –pseudo proper ferroelast. 

Pseudo-proper ferroelect. – proper ferroelast. 
Ferroic states/domains: (Pz , εxy), (-Pz , -εxy)  

εxy ~ Pz 
faintness index n=1 

….A stress can change sign of the polarization 
…An electric field can change sign of the strain 

bilinear coupling:   Pz εxy 

I
εxy 

Pz 



CONCLUSION: 

SYMMETRY CONSIDERATIONS ARE NOT ONLY USEFUL,  BUT  NECESSARY FOR A FULL 
CHARACTERIZATION OF STRUCTURAL PHASE TRANSITIONS 

NOWADAYS THERE ARE FREE COMPUTER TOOLS THAT MAKE THIS TASK RATHER 
STRAIGHTFORWARD 

EPILOGUE: 

INCOMMENSURATE MODULATED STRUCTURES HAVE ALSO SYMMETRY (and a point group) 


