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SrTiO3 

Pm-3m --- I4/mcm (a+b, -a+b,2c;1/2,1/2,1/2)    

tilting of octahedra 



SrTiO3 

Pm-3m --- tetragonal, centered I and supercell (a+b, -a+b, 2c)    

Possible space groups ? Let us apply program SUBGROUPS…. 

(example 2 in the Tutorial of SUBGROUPS) 



SrTiO3 

Pm-3m --- tetragonal, centered I and supercell (a+b, -a+b,2c)    

Possible space groups of  
maximal symmetry? 

Apply program SUBGROUPS…. 

There are four different tetragonal space groups of maximal symmetry, two of them of 
type I4/mcm: 

As in many other cases, the symmetry is maximal for the  
supercell observed… 



SrTiO3 

Pm-3m --- tetragonal, centered I and supercell (a+b, -a+b,2c)    

Which subgroup 
of type I4/mcm is  
the one realized in SrTiO3? Let us use Structure Relations…. 

or use PSEUDO…. same results?  



SrTiO3 

Pm-3m ! tetragonal, centered I and supercell (a+b, -a+b,2c; 1/2,1/2,1/2)    

Active irrep?  
use  link to Get_irreps in 
SUBGROUPS output:   
R5- with k=(1/2,1/2,1/2) 

Use SUBGROUPS in its 
option where the input can 
be a k-vector 
instead of a supercell and 
filtered for the irrep R5-  

Other possible symmetries for  
the same active irrep R5-? 

Possible 
symmetries 
resulting from 
a R5- distortion 



Prediction of probable symmetries for compounds of a family, or for the same 
compound at different conditions due to a common active irrep, with the order parameter 
taking different directions: 

Example: Perovskites are known to have systematically a soft or unstable mode with 
irrep R5-: 

isotropy subgroups of R5-: 

G           ? 
possible isotropy subgroups for a given active irrep? 

irrep kernel  

irrep epikernels  



I4/mcm (a+b,-a+b,2c;1/2,1/2,1/2) 

SrTiO3 CeAlO3  

R-3c (a-c,-a+b,2a+2b+2c;1/2,1/2,1/2) 

OP direction: (a,0,0) OP direction: (a,a,a) 

Phases resulting from different combinations of R5- modes 
(different OP directions) 



LaCoO3  

C2/c (a+2b+c,a-c,a+c;1/2,0,0) 

OP direction: (a,a,b) 

isotropy subgroups of irrep R5- 
(irrep epikernels and kernels) 

let us obtain a starting structural model of LaCoO3 with TRANSTRU… 



Von Neumann principle: 

•   all variables/parameters/degrees of freedom compatible with the  
symmetry will be present in the total distortion  

•  Tensor crystal properties are constrained by the point group 
symmetry of the crystal  
    (some coefficients can be forced to be identically cero). 

•  Reversely: any tensor property allowed by the point group 
symmetry can exist (large or small, but it is not forced to be 
cero) 

Consequences of symmetry 



Origin of ferroic properties: multistability 

Ferroic structure:  

 “distorted” structure with respect to a configuration 

 with a higher point group symmetry 

Ferroic domains:  

 equivalent crystal tensors with different orientations 

related by lost point group operations 

Ferroic properties:  

 require the symmetry break of the point-group 

symmetry between distorted and undistorted configurations 

FERROIC SPECIES: 
The characterization of the ferroic properties requires 
to know the two point group symmetries: the one of the 
ferroic structure, and also of the related high-symmetry 
configuration. EXAMPLE:   mmmFmm2 



Some examples of ferroic species and corresponding switchable 
spontaneous crystal tensor quantities 

mmmFmm2 

 ε1 0  0  
 0  ε2 0 
 0  0  ε3 

 ε1 0  0  
 0  ε2 0 
 0  0  ε3 

strain 

polariz. (0,0,0) (0,0,Pz) 
ferroelect. 

mmmF112/m 

 ε1 0  0  
 0  ε2 0 
 0  0  ε3 

 ε1 ε6 0  
 ε6 ε2 0 
 0  0  ε3 

strain 

polariz. (0,0,0) (0,0,0) 
ferroelastic 

 422F222 

 ε1 0  0  
 0  ε1 0 
 0  0  ε3 

 ε1 0 0  
 0 ε2 0 
 0  0  ε3 

strain 

polariz. (0,0,0) (0,0,0) 
ferroelastic 

spont. strain: εs= ε1- ε2  

m-3mFR3m 

 ε 0  0  
 0  ε 0 
 0  0  ε 

 ε ε4 ε4  
 ε4 ε  ε4 
 ε4 ε4 ε

strain 

polariz. (0,0,0) (P,P,P) 

and ferroelastic 
ferroelectric 



Not to confuse in a ferroic phase !: 

•  Linear response properties (giant or not!) 

•  switching properties (necessarily non-linear) 

Q1 

Q2 

G 

F 

We need to know only the symmetry of the phase. 

We need to know also the symmetry of the “parent”  
phase. 

G = F + g3F + g3F + ... + gsF     

gn(Q1 ... | Q(s)
1 ....)  



Multistability: enumeration of distinct domains: 

distinct Ferroic states: only if the symmetry operations g contain  
different rotational parts: 

G            F 
 distinct domains/states: {Q’} T(g)Q =  Q’ 

Number of distinct equivalent states = Order of G 
Order of F 

We need to know the irrep  
of the order parameter 

Number of distinct ferroic states = Order of PG 

Order of PF 

Two levels of knowledge of the symmetry of a distorted phase: 
1) pair of points groups: (PG,PF) 

2) space group G + active irrep(s) + plus direction order parameter(s) Q 

(Ferroic species) 



Hierarchy of distortion modes:  

Von Neumann principle:  
all modes compatible with the symmetry will be present in the total distortion …. 

But not all with the same weight !: 

primary mode(s): unstable  

secondary modes: induced by the presence of the primary one(s).  

it drives  the phase transition and dictates 
the phase symmetry  

order parameter 

much weaker in 
general 

they are all modes compatible with the 
phase symmetry. They only break the 
the symmetry to some supergroup. 

secondary distortion modes are in general not unstable! 



½  κ2 Q2  + 

Example of a (free)  energy map with 
primary (Q1) and secondary (Q2) 
distortion modes: 

Q2 

Q1 
E = Eo + ½  κ1 Q1 + 2 2  γ Q1 Q2 + 

κ1<0 κ2>0 
3 

Anharmonic allowed coupling 

Equivalent ferroic stable structures 

κ1<0 

κ2>0 

Q2 
equil. = - (γ /k2) Q1 

3 

Hierarchy of spontaneous modes/variables 

faintness index 



Equivalent ferroic states  

gn(Q1,...,Qm | Q(s)
1,...,Q(s)

ms )  

(Q1,...,Qm | Q(s)
1,...,Q(s)

ms )  

gn 

In general a ferroic state (domain) is given by the values of all spontaneous quantities: 
order parameter(s) secondary spontaneous parameters  

G = F + g3F + g3F + ... + gsF     

Coset decomposition for a symmetry break with respect to a parent phase of symmetry G: 

secondary spontaneous parameter 

Number of macroscopically  distinct ferroic states = index= 
Order of PG 

Order of PF 

(point groups) 

gn(Q1 ... | Q(s)
1 ....) = (-Q1 ... | -Q(s)

1 ....)   

Q1 

Q(s)
1 

Switching a secondary small parameter will produce 
in this case the switching of the large primary one ….. 



Exercise  1 (Example 2 of tutorial of SUBGROUPS)    

A	   structure	   has	   symmetry	   Pnma.	   At	   lower	   temperatures,	   a	   phase	   transition	  
happens,	   and	  diffraction	   experiments	   show	   that	   superstructure	   re9lections	   at	  
points	   (h,	   k,	   l	   +	   1/2	   )	   appear,	   indicating	   the	   duplication	   of	   the	   c	   parameter,	  
while	  keeping	  an	  orthorhombic	  lattice.	  
(i).	   Assuming	   a	   group-‐subgroup	   related	   transition	   and	   using	   SUBGROUPS,	  
predict	  the	  only	  two	  possible	  space	  groups	  of	  this	  low-‐temperature	  phase,	  and	  
the	  transformation	  matrix	  relating	  it	  with	  the	  parent	  space	  group	  Pnma.	  	  
(ii).	   What	   is	   the	   wave	   vector	   associated	   with	   the	   order	   parameter	   of	   this	  
transition?	  
(iii)	  Using	  the	  Get_irreps	  link	  within	  SUBGROUPS	  determine	  if	  the	  space	  groups	  
determined	  in	  (i)	  are	  isotropy	  subgroups	  of	  an	  irrep,	  and	  in	  each	  case,	  identify	  
the	  label	  of	  the	  active	  primary	  irrep	  	  of	  the	  transition.	  	  
(iv)	  From	  the	  output	  of	  Get_irreps,	   in	  both	  cases	   identify	   the	   irrep	  associated	  
with	  a	  secondary	  polar	  distortion	  mode.	  
(v)	   Determine	   using	   SUBGROUPS	   all	   the	   possibles	   symmetries	   that	   could	  
happen	   in	  a	  phase	   transition	  with	   this	  wave	  vector,	  under	   the	  constraint	   that	  
the	  Landau	  assumption	  is	  ful9illed	  (the	  order	  parameter	  transforms	  according	  
to	  a	  single	  irrep).	  



c 

b 

Amm2 – BaTiO3: strain as secondary mode/variable 

P 

P P 

P 

εyz  < 0 

-εyz > 0 

Proper ferroelectric 
Improper ferroelastic 

One can turn 90º the polarization switching the strain with a stress … 



Ferroic properties Amm2- BaTiO3 

One can switch a secondary mode: 

 By means of an electric field, we switch a non-polar degree of freedom.... 

and viceversa.   

Spontaneous quantities (with respect to cubic Pm-3m) in 
macroscopic tensors:  

Polarization (ferroelectric) – proper (order parameter) 
Strain (ferroelastic) – improper (not order parameter) 



To know which is the “proper” ferroic property, one has to identify the 
order parameter symmetry (irrep of G) 

General Rules of a phase transition with symmetry break 

To know which is the symmetry F of the distorted phase, one can then use 
the invariance equation: 

G           F? for a given symmetry break 

T[g] Q =  Q  g belongs to F 

Knowing the pair of symmetries (G,F) is sufficient to predict all ferroic properties (but 
not their magnitudes!).  

secondary spontaneous ferroic variables (“improper” ferroic properties): 

X ~  F(n)[Q1,…,Qn]  

Polynomial of order n (faintness index) 

energy coupling:  X.F(n)[Q1,…Qn]  

matrix irrep 

T[g] Q =  Q’  with g belonging to G, but not F Distinct ferroic states obtained by: 



An “improper”  ferroelectric (and ferroelastic)  -  Gd2(MoO4)2 

A Polar (ferroelectric) mode as a secondary mode 

P421m Pba2 
160 C 

(Z=2) (Z=4) cell duplication 

P421m 

Pba2 

Cmm2 

Γ3 (B2) 
M2+M4 

primary mode 

M=( 1/2, 1/2, 0) 

QM2M4= 1.6191 Å 

QΓ3   = 0.0716 Å 

secondary  
mode 

( 42m ------  mm2) 

polar mode/polarization 

antiferrodistortive mode (multiplies the unit cell) 
         wave vector ≠ 0 

Pz 



Ferroelectric Domains in Amm2 BaTiO3 

Number of domains = 48/4=12 

12 eq. directions for the order parameter:  

Order of m-3m = 48 

Amm2: Q(0,1/√2,1/√2) 

(m-3m, mm2) 
Pm-3m: 3-dim order parameter 
irrep T1u  (vector representation) 

Order of mm2 = 4 
P 

P P 

P 

(0,1/√2,1/√2) 
(0,-1/√2,1/√2) 
(0,-1/√2,-1/√2) 
(0,1/√2,-1/√2) 

(1/√2,0,1/√2) 
(-1/√2,0,1/√2) 
(1/√2,0,-1/√2) 
(1/√2,0,-1/√2) 

(1/√2,1/√2,0) 
(-1/√2,1/√2,0) 
(-1/√2,-1/√2,0) 
(1/√2,-1/√2,0) 



Pseudo-proper ferroic properties: the case of ferroelectric KDP 

I-42d           Fdd2 ( -42m ------  mm2) 

No cell multiplication 
(order parameter k=0) 

F

two possibilities: 

Pz order parameter –  εxy secondary 

Pz secondary –  εxy order parameter 

Proper ferroelect. –pseudo proper ferroelast. 

Pseudo-proper ferroelect. – proper ferroelast. 
Ferroic states/domains: (Pz , εxy), (-Pz , -εxy)  

εxy ~ Pz 
faintness index n=1 

….A stress can change sign of the polarization 
…An electric field can change sign of the strain 

bilinear coupling:   Pz εxy 

I
εxy 

Pz 



CONCLUSION: 

SYMMETRY CONSIDERATIONS ARE NOT ONLY USEFUL,  BUT  NECESSARY FOR A FULL 
CHARACTERIZATION OF STRUCTURAL PHASE TRANSITIONS 

NOWADAYS THERE ARE FREE COMPUTER TOOLS THAT MAKE THIS TASK RATHER 
STRAIGHTFORWARD 

EPILOGUE: 

INCOMMENSURATE MODULATED STRUCTURES HAVE ALSO SYMMETRY (and a point group) 


