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AMPLIMODES is a computer program available on the Bilbao Crystal-

lographic Server that can perform a symmetry-mode analysis of any distorted

structure of displacive type. The analysis consists in decomposing the symmetry-

breaking distortion present in the distorted structure into contributions from

different symmetry-adapted modes. Given the high- and the low-symmetry

structures, AMPLIMODES determines the atomic displacements that relate

them, defines a basis of symmetry-adapted modes, and calculates the amplitudes

and polarization vectors of the distortion modes of different symmetry frozen in

the structure. The program uses a mode parameterization that is as close as

possible to the crystallographic conventions, expressing all quantities for the

asymmetric unit of the low-symmetry structure. Distorted structures are often

related to their higher-symmetry counterparts by temperature- and/or pressure-

driven phase transitions, ferroic phase transitions being a particular example.

The automatic symmetry-mode analysis performed by AMPLIMODES can be

very useful for establishing the driving mechanisms of such structural phase

transitions or the fundamental instabilities at the origin of the distorted phases.

1. Introduction

The structure of many materials can be seen as the result of a

distortion with respect to a configuration of higher symmetry.

This structure of higher symmetry may be another phase of

the compound or a latent virtual arrangement that can be used

as a reference for the observed structure and often for other

phases of the same compound. Let us call this structure (real

or virtual) of higher symmetry the parent structure or parent

phase. A group–subgroup relation then necessarily exists

between the space groups of the parent and the observed

structures, and the structural distortion that relates them can

be qualified as a symmetry-breaking distortion. Usually small

distortions imply that the parent phase can be thermally

stabilized, and one or several structural phase transitions

towards the arrangement of higher symmetry may happen as

temperature is increased. Ferroic materials and ferroic phase

transitions are a particular case of such general phenomena.

Structural distortions can be of displacive type or can include

some type of order–disorder component. Here, we only

consider distorted structures of displacive type.

The structural distortion present in a distorted (pseudo-

symmetric) structure contains in general a primary component

that corresponds to a mode or modes that are unstable in the

parent high-symmetry configuration and are fundamental for

explaining the stability of the distorted structure. The distor-

tion can also contain other secondary contributions of less

importance associated with modes that are allowed by

symmetry and become frozen through coupling with the

primary modes. This is known to happen in phases related to

symmetry-breaking structural phase transitions, and is the

basis of their treatment within the Landau theory (Landau &

Lifshitz, 1969). However, even without the existence of phase

transitions, the use of symmetry-adapted modes in the

description of distorted structures is expected to introduce a

natural physical hierarchy among the structural parameters.

Distortion modes associated with different irreducible repre-

sentations (in the following referred to as irreps) of the parent

space group have in general quite different origin and are

bound to have quite different responses to external pertur-

bations. For crystallographic purposes, a structural description

in terms of symmetry-adapted modes can be especially useful,

as the parameters used are more adequate for a controlled

refinement of the structure, or for comparing structures or

materials with the same or different symmetries.

The separation of the contributions of the different

symmetry modes in a structural distortion is usually achieved

using the so-called symmetry-mode analysis (cf. Mañes et al.,

1982; Perez-Mato et al., 1986; Withers et al., 1988; Hatch et al.,

1990; Stokes et al., 1991; Aroyo & Perez-Mato, 1998). First, it is

necessary to determine a basis of symmetry modes of the

parent phase compatible with the low-symmetry phase, and

then to decompose the structural distortion as a sum of the

contributions of all of them. Despite its advantages, a

symmetry-mode description is rarely used in phase-transition

studies or in the characterization of pseudosymmetric struc-

tures. The probable reason is that such symmetry analysis is

rather complex as it requires full use of group-theoretical
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methods, including detailed knowledge of group–subgroup

relations between space groups and their irreps. Free

computer tools that allow (total or partial) symmetry-mode

analysis have appeared recently [SARAh (Wills, 2000),

ISODISPLACE (Campbell et al., 2006), MODY (Sikora et al.,

2004) and BasIreps (Rodriguez-Carvajal, 1993)]. However, the

use of a parameterization quite distant from crystallographic

conventions has hampered their widespread use in crystal-

lography. These tools use the setting of the parent structure

and the parent space group to describe modes and distortions,

without explicit use of the space-group symmetry of the

distorted structure.

The aim of the present contribution is to report the devel-

opment of a systematic procedure and a new computer

program for the symmetry-mode analysis of any displacive

distorted structure. The program is available at the Bilbao

Crystallographic Server (Aroyo, Kirov et al., 2006; Aroyo,

Perez-Mato et al., 2006). Given the parent and the distorted

structure of lower symmetry, AMPLIMODES calculates the

atomic displacements relating the two structures if their

magnitudes lie within some tolerance range. A complete basis

of symmetry-adapted displacive modes is then determined and

defined. The program finally decomposes the distortion in

terms of these basis modes, and calculates the polarization

vectors and amplitudes for each of the symmetry-adapted

components present in the distorted structure. A fundamental

feature of the program is that the parameterization of the

structural distortion is achieved in a form close to the

conventional crystallographic form. Modes are given in terms

of atomic displacements in relative units for the atoms of the

asymmetric unit of the distorted phase, so that the actual

atomic positions describing the structure in the conventional

approach are readily obtained from the listed modes and their

amplitudes. This should facilitate a direct translation from a

conventional to a mode description and vice versa. Three

illustrative examples are presented to explain the necessary

input data and provide details on the output.

2. The method

2.1. Input structure data

Let G and H be the space groups of the parent and the

distorted structures (of lower symmetry) so that we are

considering a symmetry break G�!H with G>H. For the

systematic analysis of the global distortion it is necessary to

specify the transformation matrix-column pair (P, p) that

relates the coordinate system of the group to that of the

subgroup: the square matrix P defines the transformation of

the conventional basis ða; b; cÞG of G to the conventional basis

ða; b; cÞH of H:

ða; b; cÞH ¼ ða; b; cÞGP: ð1Þ

The column p = (p1; p2; p3) gives the coordinates of the origin

OH of H referred to the coordinate system of G.

The program requires as input only the distorted and parent

structures described in conventional settings, and the matrix-

column (P, p) described above, which relates the two

settings.

Thus, for the default example shown by the program, the

following input data are introduced:

(i) High-symmetry (parent) structure:

221

4:006 4:006 4:006 90 90 90

3

Ba 1 1a 0:0 0:0 0:0
Ti 1 1b 0:5 0:5 0:5
O 1 3c 0:5 0:0 0:5

(ii) Low-symmetry (distorted) structure:

38

3:9828 5:6745 5:6916 90 90 90

4

Ba 1 2a 0:0 0:0 0:0
Ti 1 2b 0:5 0:0 0:5170
O 1 2a 0:0 0:0 0:4890
O 2 4e 0:5 0:2561 0:2343

(iii) Transformation (P, p) relating the (conventional) bases

of the two structures: 
0 1 1

0 �1 1

1 0 0

�����
0

0

0

!
: ð2Þ

The first row in the two sets of structural data refers to the

space-group number according to International Tables for

Crystallography (2002, Vol. A, 5th ed.), referred to as ITA in

the following, i.e. Pm3m (No. 221) and Amm2 (No. 38). The

third row indicates the number of atoms in the asymmetric

unit.

This input example corresponds to the orthorhombic phase

of the well known ferroelectric BaTiO3, with its cubic

perovskite structure taken as the parent phase. The structural

data for the orthorhombic phase have been taken from Kwei

et al. (1993). This case will be used as an example in parallel to

the general description of the program.

It is important to emphasize that to perform a meaningful

symmetry-mode analysis of a distorted structure with

AMPLIMODES one can just as well use a hypothetical parent

structure as a real one. For example, one can start with the

distorted phase of symmetry H and construct an ideal parent

structure whose symmetry group G (with G>H) is determined

by the structural pseudosymmetry of the low-symmetry phase,

either by hand, from previous knowledge of similar

compounds, or using computer tools such as PSEUDO

(Kroumova et al., 2001), also available on the Bilbao Crys-

tallographic Server. If some of the atomic coordinates of the

parent structure are not imposed by symmetry, it is sufficient

to give them reasonable approximate values. The structural

differences between the ideal parent structure, constructed in

such a way, and any other possible parent structure of this

symmetry are due only to contributions of symmetry-adapted

modes compatible with G, i.e. the so-called totally symmetric
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modes.1 The contributions of all the rest, which are symmetry-

breaking distortion modes, do not depend on the choice of the

variable atomic coordinates of the parent structure.

In order to perform the symmetry-mode analysis two

concepts have to be properly defined, namely, the structural

distortion relating the parent and the distorted phases, and the

basis with respect to which this distortion can be decomposed.

The structural distortion is defined by the so-called displace-

ment field which is calculated from the atomic positions of the

low- and high-symmetry structures expressed in relative

comparable coordinates. The basis with respect to which this

displacement field can be decomposed is formed by a set of

symmetry-adapted modes compatible with the symmetry

break between G and H.

2.2. Atomic displacement field

The structural distortion relating the two phases can be

decomposed into two contributions, a homogeneous strain and

an atomic displacement field given by the displacements of

each atom in the low-symmetry structure with respect to its

position in the given parent structure. This decomposition

distinguishes the elastic degrees of freedom from the internal

atomic degrees of freedom, and is carried out automatically if

the atomic displacements are obtained by subtracting the

corresponding atomic coordinates in the two structures

expressed in relative units with respect to equivalent bases.

Thus, if this set of atomic displacements is zero, the distortion

between the two structures is due only to a homogeneous

strain. In general, the strain component of the distortion can

be directly derived from the comparison of the unit cells of the

two phases (again referred to equivalent bases).

For full mathematical consistency (orthogonality and

completeness of the set of symmetry-adapted modes etc.), the

symmetry-mode analysis of the distorted structure should be

performed disregarding the strain component of the structural

distortion. The strain present in the real structure can subse-

quently be added in a straightforward manner, by just taking

the real unit cell instead of the idealized unstrained one, while

keeping the same relative coordinates. In the following, we

obviate this last step and when referring to the structural or

global distortion we generally mean the internal distortion of

the atomic coordinates given by the above-mentioned atomic

displacement field.

The atomic displacement field is completely defined by the

atomic displacements uð�; iÞ within the asymmetric unit of the

low-symmetry structure. The index �, � ¼ 1; . . . ; s, labels the

atoms of the asymmetric unit of the high-symmetry parent

structure, and i, i ¼ 1; . . . ; n�, distinguishes the possible split

atomic positions in the low-symmetry asymmetric unit, due to

the symmetry break G�!H (Wondratschek, 1992). The set of

atomic positions rð�; iÞ, within an H asymmetric unit,

describing the distorted structure can be expressed as

rð�; iÞ ¼ roð�; iÞ þ uð�; iÞ; ð3Þ

where roð�; iÞ denotes the atomic positions in the parent

structure with space group G.

Independently of the H asymmetric unit introduced in the

input for the distorted structure, the program defines for the

distorted structure a new asymmetric unit, by transforming to

the H basis the G asymmetric unit of the parent phase of the

input. If necessary, additional atoms resulting from the split-

ting of some of the Wyckoff orbitals are added, in accordance

with equation (3).

Thus, for our example, the program first gives the high-

symmetry structure transformed in the subgroup basis,

described as

038

4:0060 5:6653 5:6653 90 90 90

4

Ba 1 2a 0:000000 0:000000 0:000000
Ti 1 2b 0:500000 0:000000 0:500000
O 1 4e 0:500000 0:250000 0:250000
O 1 2 2a 0:000000 0:000000 0:500000

where the O orbital is split into two. TheH asymmetric unit so

defined is the one that is relevant for all further output and is

referred to as the reference structure. The program deter-

mines the displacement field uð�; iÞ from comparison of the

atomic positions of thisH-transformed asymmetric unit of the

parent structure with the atomic positions of the distorted

structure, both expressed in relative coordinates. The program

only proceeds further if it is able to find a mapping of both

structures with a set of displacements uð�; iÞ with absolute

values smaller than the given tolerance. In other words, an

atom in the reference structure is mapped to the closest atom

of the same type in the distorted structure, and the tolerance

defines the largest allowed distance for this mapping. The

program stops and sends a warning message with the option

for the user to perform the mappings by hand in the following

cases: (i) the program cannot pair atoms within the tolerance

range and (ii) the pairing is not unique, i.e. there are two or

more atoms of the reference structure mapped on the same

atom of the distorted structure.

Note that the cell parameters listed in the reference struc-

ture above correspond to the transformation of those asso-

ciated with the parent structure. Thus, for our example,

b ¼ c ¼ 21=2a, according to the transformation (2). These cell

parameters are used by the program for computing (when

needed) the absolute values of the components of the atomic

displacements uð�; iÞ. In other words, the calculation of these

displacements in ångströms is carried out disregarding any

strain of the distorted structure with respect to the parent one.

The determination of the atomic displacement field requires

special attention if the distorted structure is of polar type. The

arbitrariness of the origin of the structure along the polar

direction(s) introduces some arbitrariness in the atomic

displacements defining its relation with the parent phase. It is

convenient in most cases to change the choice of origin of the

distorted polar phase, so that no global translation of the

structure is included in the atomic displacements relating the
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two structures, i.e. the arithmetic centre of the structure is not

displaced when parent and distorted structures are mapped

through the displacement field. Therefore, in the case of a

polar distorted phase, the program, in general, introduces an

origin shift, to obtain a displacement field fulfillingP
�;i

multð�; iÞ uð�; iÞ ¼ 0; ð4Þ

where multð�; iÞ is the multiplicity of the atomic site ð�; iÞ

within the primitive unit cell of the space group H.2

Note that one can find in the literature another form of

displacement-field calculation for the case of polar distorted

phases; it is based on the so-called centre-of-mass condition,

which requires that the centre of mass of the structure is left at

rest during the transformation (see e.g. Perez-Mato et al.,

2004).

The space group of the distorted phase Amm2 is polar along

z, and the origin shift required is (0, 0, �0.00508). The

resulting displacement field given by the program is as follows:

WP Atoms Atomic distances

ux uy uz juj

2a ð0; 0; zÞ Ba1 0:0000 0:0000 0:0051 0:0288
2b ð1=2; 0; zÞ Ti1 0:0000 0:0000 0:0221 0:1251
4e ð1=2; y; zÞ O1 0:0000 0:0061 �0:0106 0:0694
2a ð0; 0; zÞ O1 2 0:0000 0:0000 �0:0059 0:0335

In this output, ux; uy; uz are the components of the displace-

ments in relative units, while juj is the absolute displacement

given in ångströms. The maximum atomic displacement

between the two structures is therefore smaller than 0.13 Å.

The set of atomic displacements defining any distortion

present in an H distorted phase can be considered as the

components of a multidimensional vector defined in a vector

space with the scalar product given by the sum of the

conventional three-dimensional scalar products for all

displacements within an H primitive unit cell. The set of

displacements uð�; iÞ restricted to the H asymmetric unit, i.e.

with � ¼ 1; . . . ; s, i ¼ 1; . . . ; n�, unambiguously defines the

whole displacement field. By definition, the distortion main-

tains the symmetry given by the space groupH. Therefore, the

displacement of an atom related to an atom ð�; iÞ of the

asymmetric unit by a symmetry operation ofH represented by

a matrix-column pair ðW;wÞ is given by Wuð�; iÞ. Considering

that any operation W is unitary, the scalar product of two

arbitrary distortions defined by the sets uð�; iÞ and vð�; iÞ can

then be calculated using the expressionP
�;i

multð�; iÞ uð�; iÞ � vð�; iÞ; ð5Þ

which is restricted to theH asymmetric unit. The magnitude of

a displacive distortion can be measured by the norm or

amplitude of its displacement field, given by

A ¼

�P
�;i

multð�; iÞ juð�; iÞj2
�1=2

: ð6Þ

This is the root-summed square of all atomic displacements

within a primitive unit cell of the reference structure.

This amplitude depends on the specific values of the cell

parameters that have been associated with the reference

parent structure. Its variation will be minimal so long as these

cell parameters have reasonable values that imply only a small

strain of the lattice of the distorted structure.

The dimension D of the vector space of H-compatible

distortions is equal to the number of free atomic coordinates

in the conventional description of the structure. Thus, in the

Amm2 structure of BaTiO3 this dimension D is 5 (this includes

the global translation along the polar axis), and from the table

of displacements given above one can derive from equation

(6) that the distortion present in the Amm2 structure has a

total amplitude of 0.165 Å.

2.3. Basis modes

In general, anyH distortion can be expressed as the sum of

the contributions of a set of symmetry-adapted distortion

modes. In other words, one can choose within the D-dimen-

sional space of H distortions a basis of specific distortions or

modes, """ð j j �; iÞ; j ¼ 1; . . . ;D, with certain symmetry

properties, such that

uð�; iÞ ¼
P

j

Aj """ð j j �; iÞ: ð7Þ

The symmetry properties of a mode """ are characterized by an

irrep of the high-symmetry space group G, defining its trans-

formation properties under the operations of this group. In

general, the modes should satisfy some additional restrictions

so that they are compatible with H. Each distortion mode in

equation (7) is compatible with a space group Z that is

intermediate between G and H (G � Z � H), i.e. its isotropy

group (Jaric & Senechal, 1984; Hatch & Stokes, 1985) is a

supergroup of H. This implies that the symmetry modes in

equation (7) are in general restricted to a specific subspace

within the representation space associated with their asso-

ciated irrep. This restriction is always present if we are

working with a fixed space group H, and therefore the irrep

associated with each mode can be used as a single label for

describing its symmetry properties (leaving implicit the addi-

tional restriction forced by the space group H).

In the following, we will use two indices, � and m, to

distinguish the members of the basis of symmetry-adapted

modes. The index � is a global label to enumerate the different

irreps present in the basis, while m ðm ¼ 1; . . . ; n�Þ distin-

guishes the different independent modes for a given irrep �. In

the following we shall call the modes in this basis, chosen by

the program, basis modes. We can then rewrite equation (7) as

uð�; iÞ ¼
P
�;m

A�;m"""ð�;m j �; iÞ; ð8Þ

where A�;m is the amplitude of the symmetry mode ð�;mÞ in

the structural distortion.

The basis modes ð�;mÞ are chosen orthonormalized (with

ångströms as length unit):
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P
�;i

multð�; iÞ """ð�;m j �; iÞ � """ð�0;m0 j �; iÞ ¼ ���0�mm0 ; ð9Þ

where the sum is over all atoms ð�; iÞ in the H asymmetric

unit. The orthogonality property is automatically satisfied by

modes corresponding to different irreps, while in the case of

modes associated with the same irrep, a systematic orthogo-

nalization procedure can be applied. Note that this implies

that the basis of symmetry modes is in general not unique and

for any practical calculation a certain arbitrary choice must be

made.

The normalized distortion given by the so-called polariza-

tion vector """ð�;m j �; iÞ defines the basis mode ð�;mÞ except

for a global amplitude. In general, we will use the terms mode

and mode polarization vector as practically synonymous.

The set of displacements of each Wyckoff orbital of the

parent structure form an invariant subspace for all symmetry

operations, so that the basis modes can be chosen considering

separate modes for each Wyckoff orbital in the parent struc-

ture, i.e. """ð�;m j �; iÞ ¼ 0 for all atoms � except one.

Furthermore, the symmetry constraints of the polarization

vector of a given mode only depend on the type of Wyckoff

position, so that the set of displacements defining the polar-

ization vectors can be chosen to be identical for all crystal-

lographic orbitals of the same Wyckoff position. Hence, in

practice, the index m in """ð�;mÞ labelling the basis modes

associated with a given irrep � can be decomposed into two

labels: one giving the atom representative � of the Wyckoff

orbital having displacements in this mode, and an additional

index for further enumeration in case of multiplicity. When-

ever it is possible, we will maintain, however, for simplicity a

single label m, as a short symbolic notation for enumerating

the basis modes for a given irrep.

The basis modes that are used by AMPLIMODES in the

description of the Amm2 structure of BaTiO3 are given in the

following. It consists, as expected, of five modes: four corre-

sponding to the irrep GM4�(��4 ) and one to GM5�(��5 ) with

wavevector k ¼ ð0; 0; 0Þ.3 The program lists the basis modes,

using as mode labels (given below in square brackets), apart

from their irrep, the relevant atom within the parent asym-

metric unit and a multiplicity index:

Mode label Atom �x �y �z
½GM4� Ba1 1� Ba1 0:00 0:000000 0:176512
½GM4� Ti1 1� Ti1 0:00 0:000000 0:176512
½GM4� O1 1� O1 0:00 0:062406 0:062406

O12 0:00 0:000000 0:124813
½GM4� O1 2� O1 0:00 �0:088256 0:088256

O12 0:00 0:000000 0:000000
½GM5� O1 1� O1 0:00 �0:062406 �0:062406

O12 0:00 0:000000 0:124813

The displacements �x, �y, �z associated with each mode are

given in relative units with respect to the low-symmetry unit

cell, and they fulfil the mentioned orthonormalization condi-

tions if transformed into absolute displacements using the H-

transformed unit cell of the parent structure. In the example,

these displacements are in fact quite simple fractions when

expressed in absolute distance units. For instance, modes

(GM4� Ba1 1) and (GM4� Ti1 1) are displacements of the

corresponding atoms by 1 Å along the z direction of the

Amm2 setting, while those of the mode (GM5� O1 1) for

atoms O1 and O2 are ð0;�1=81=2;�1=81=2Þ and ð0; 0; 2=81=2Þ,

also in ångströms. The definition and use of the basis modes in

the setting of the low-symmetry distorted structure, and in

relative units, are a key point of the parameterization used by

the program. Although they apparently complicate the

expressions for the polarization vectors of the modes, they

allow in fact the expression of all mode relations in accordance

with crystallographic conventions. In this way, their effect on

theH structure becomes self-evident, and they can be applied

directly on the relative coordinates of the asymmetric unit of

the H reference structure.

2.4. Decomposition

Expression (8) can be considered as a change of basis in the

description of the atomic displacement field as a vector in the

D-dimensional H distortion space, i.e. a linear transformation

between the atomic parameters, uð�; iÞ, that define the atomic

positions in the distorted structure and the amplitudes, A�;m, of

the chosen basis of symmetry-adapted modes. The determi-

nation of the contribution of each of the symmetry-allowed

modes to the distortion, given by these amplitudes A�;m, is

straightforward, taking into account the orthonormal proper-

ties of the basis modes:

A�;m ¼
P
�;i

multð�; iÞ """ð�;m j �; iÞ � uð�; iÞ: ð10Þ

The amplitudes A�;m have length as dimension and can be

expressed in absolute length units. This allows the comparison

of the contributions of different distortion modes even if they

represent collective atomic displacements of very different

type. These amplitudes weakly depend on the chosen parent

unit cell, since the absolute atomic displacements are calcu-

lated for the undistorted lattice. This minor ambiguity is

unavoidable, since in general an unstrained G-compatible

lattice has to be considered for both atomic displacements and

symmetry modes in order to achieve a mathematically

consistent symmetry-mode analysis.

From a physical/chemical viewpoint, if we are interested in

the atomistic mechanism at the origin of a certain distorted

structure, it is convenient to distinguish and separate, for each

possible irrep, the amplitude of the distortion with this

symmetry and its normalized polarization vector. For instance,

in our BaTiO3 example, according to equation (10), the

amplitudes in ångströms obtained for the chosen ortho-

normalized basis modes are
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GM4� Ba1 1 : 0:028780
GM4� Ti1 1 : 0:125091
GM4� O1 1 : �0:041823
GM4� O1 2 : �0:094725
GM5� O1 1 : �0:005609

The amplitude of the total distortion is therefore given by the

norm of the five-dimensional vector defined by these five

components, i.e. 0.1650 Å, in accordance with the norm

calculated directly from the atomic displacements (cf. x2.2).

Within this total distortion, the amplitude of the GM4�

distortion is given by the norm of a vector limited to the first

four amplitudes above, while the specific combination of the

four GM4� basis modes, which is not forced by symmetry,

present in the observed GM4� distortion, i.e. the polarization

vector of the actual GM4� distortion, is given by the

normalization of the corresponding four-component vector:

AmplitudeðGM4�Þ ¼ 0:1649 Å;

eðGM4�Þ ¼ ð0:174511; 0:758503;�0:253598;�0:574375Þ:

ð11Þ

This is the form in which AMPLIMODES first presents the

weight and internal structure of the symmetry components

present in the analysed distorted structure, separating their

amplitude and expressing their normalized polarization vector

in terms of the basis modes of the corresponding irrep.

Henceforth, we shall call these structure-dependent linear

combinations of all symmetry basis modes belonging to a

given irrep an irrep distortion component. The program also

indicates for each irrep distortion component the subspace

within the irrep space in which the distortion is restricted,

using the notation of ISOTROPY (Stokes & Hatch, 2002b).

Within the range of stability of the analysed phase one

expects that the amplitudes of each irrep distortion compo-

nent should be in general strongly temperature, pressure or

composition dependent, and with different behaviours for

different irreps, while the polarization vector would be rather

invariant. In other words, frozen distortions of a given

symmetry may change rather easily in amplitude, but their

internal structure or polarization vector in general is bound to

be quite ‘rigid’. Furthermore, a hierarchy of amplitudes among

the different irrep distortion components is expected,

depending on their relevance to the stabilization of the

distorted phase.

In our example, the GM4� distortion component corre-

sponds approximately to a specific combination of the three-

fold degenerate unstable polar normal modes that cause the

successive ferroelectric phases in BaTiO3. Its amplitude can be

identified with the Landau order parameter relating this phase

with the cubic perovskite. The GM4� distortion component is

therefore at the origin of this ferroelectric phase, while the

GM5� distortion component is secondary, allowed by

symmetry but marginal in the phase stabilization. Thus, the

strong difference of amplitudes of the two frozen distortions is

the signature of the underlying lattice dynamics mechanism

that causes this phase.

In general, the program lists the irrep distortion component

for each irrep, giving its amplitude,

A� ¼

�P
m

ðA�;mÞ
2

�1=2

; ð12Þ

and its polarization vector in terms of components for the

basis modes of this irrep,

eð�Þ ¼ ða�;1; a�;2; . . . ; a�;n� Þ; ð13Þ

with a�;m ¼ A�;m=A� .

For crystallographic purposes, the program also lists the

polarization vector of each irrep distortion component in the

atomic basis, listing the atomic displacements eð� j �; iÞ within

the asymmetric unit, calculated as

eð� j �; iÞ ¼
P
m

a�;m"""ð�;m j �; iÞ: ð14Þ

A virtual structure with only the � component of the distortion

can then be obtained by adding to the H-transformed asym-

metric unit of the reference structure the displacements

uð� j �; iÞ ¼ A�"""ð�;m j �; iÞ: ð15Þ

Hence, for our example, the polarization vector of the GM4�

distortion component [see equation (11)] is alternatively listed

as

Atom �x �y �z
Ba1 0:0000 0:0000 0:0308
Ti1 0:0000 0:0000 0:1339
O1 0:0000 0:0349 �0:0665
O1 2 0:0000 0:0000 �0:0317

The displacements are listed in relative units, which, multi-

plied by 0.1649 and added to the reference asymmetric unit

listed above, produce a virtual Amm2 structure with only the

GM4� component of the experimental distortion. Note that

these displacements include a subtle correlation due to their

GM4� symmetry, namely the displacements of the O atoms

O1 and O12 fulfil �yO1 þ �zO1 þ �zO1 2 ¼ 0. This implies in the

resulting structure a noncrystallographic symmetry constraint:

yO1 þ zO1 þ zO1 2 ¼ 0. As the GM5� distortion component,

which breaks this relation, is a secondary marginal distortion

with very small amplitude, this noncrystallographic relation is

approximately maintained by the atomic coordinates of the

experimental structure.

3. The program

3.1. Implementation

The displacement field described in the previous section is

calculated by the combined action of two modules. A first

module, TRANSTRU, transforms the high-symmetry struc-

ture to the basis of the low-symmetry phase. Although the

change of structure description is conceptually clear and

simple it can become technically complicated, especially when

the symmetry break G�!H involves an enlargement of the

unit cell. The robustness of the transformation procedure is

achieved by a parallel calculation of the splitting schemes of
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the occupied atomic positions for the transformation G>H.

The program first decomposes G in right cosets with respect to

H, and then the split orbitals are calculated. Given the space-

group types of G and H, and the transformation matrix

between their conventional bases, TRANSTRU produces the

transformed high-symmetry structure, explicitly indicating the

coordinate triplets of the representatives of the split atomic

positions. An important feature of this tool is that it provides

the Wyckoff labels and multiplicity for each atom repre-

sentative in the transformed structure.

The second module, COMPSTRU, searches for an optimal

atom mapping between the high- and low-symmetry structures

and calculates the corresponding atomic displacement field. It

compares the (relative) coordinate triplets of the high-

symmetry structure referred to the basis ofH with those of the

low-symmetry structure and forms pairs of atoms between the

two structures so that the corresponding displacements are

within the maximal allowed distance (tolerance length)

defined in advance. The pairing procedure becomes compli-

cated if the transformation G�!H involves large atomic

displacements. An optimization routine has to supplement the

pairings procedure when atoms of the same type occupy

several independent orbitals that belong to the same Wyckoff

position type. The program asks the user to make the pairings

by hand if it is unable to find a mapping of the two structures

within the given tolerance. If the space group H is polar, the

atomic displacement field obtained by COMPSTRU is modi-

fied to cancel any global translation, shifting the origin of the

distorted structure.

Owing to their utility for other structural calculations both

programs, TRANSTRU and COMPSTRU, are also accessible

online on the Bilbao Crystallographic Server as independent

tools.

The bases of orthonormal symmetry modes necessary for

the symmetry-mode analysis are obtained using the program

SYMMODES (Capillas et al., 2003), which is already available

on the Bilbao Crystallographic Server. The symmetry-mode

calculation performed by SYMMODES is based on the

program COPL (Stokes & Hatch, 2002a). For a given

symmetry break G�!H, and a specified Wyckoff atomic

orbital, SYMMODES calculates the polarization vectors of a

complete basis of symmetry modes that can contribute to the

structural distortion. The symmetry of the modes is specified

by their irrep, their direction in the representation space and

their isotropy subgroup. SYMMODES (Capillas et al., 2003)

provides the mode polarization vector of each mode in the

setting of the high-symmetry space group, giving the atomic

displacements for the whole Wyckoff orbital extended to the

H unit cell, without forcing normalization or orthogonaliza-

tion of modes of the same symmetry.

In the AMPLIMODES procedure, first SYMMODES is

called to provide the allowed symmetry modes for all Wyckoff

positions occupied in the parent structure. This information is

then transformed to the setting of the distorted structure. In

addition, the modes are internally transformed to a Cartesian

basis using the so-called standard root tensor (Schlenker et al.,

1978), to be subsequently normalized, and orthogonalized if

necessary using the Gram–Schmidt procedure. For the

decomposition of the displacement field with respect to these

basis modes, the displacement field is also transformed to the

same Cartesian basis. Simple scalar product calculations result

in the determination of the amplitudes A�;m of the basis modes

[cf. equation (10)]. The amplitudes A� for all irrep distortion

components and the components of their polarization vectors

are calculated following directly from the corresponding

definitions [cf. equations (12) and (13) in x2.4].

3.2. Input and output

In the input block the user is expected to introduce the

structural data for the high- and low-symmetry phases. The

data can be either introduced using CIF files (with certain

restrictions), or keyed by hand or inserted by copy/paste in the

provided field. The necessary structure information includes

the space-group number (as given in ITA), the cell parameters,

the number of independent atoms in the asymmetric unit and

the coordinates of these atoms. Each atom must be specified

by its chemical symbol, a sequential number for each species,

the Wyckoff position of the occupied orbital and the atomic

coordinates in relative units. If unknown, the Wyckoff position

label can be replaced by some arbitrary character. The

program in fact identifies the actual labels of the occupied

Wyckoff orbitals, independently of the Wyckoff symbols

introduced, and indicates the correct ones in the output.

Fractional coordinates 1
3,

2
3 etc. have to be introduced with six

digits for a proper identification.

The program AMPLIMODES only accepts structure data

given with respect to the default ITA settings of the space

groups used by the programs of the Bilbao Crystallographic

Server.4 The transformation matrix that relates the conven-

tional bases of the high- and low-symmetry space groups

should be provided either as a matrix-column pair (P, p) or in

the concise form P11aþ P21bþ P31c, P12aþ P22bþ P32c,

P13aþ P23bþ P33c; p1, p2, p3.

Normally the matrix P of the transformation (P, p) can

easily be obtained from the lattice parameters of the two

structures. Knowledge of the relevant origin shift, on the other

hand, can be a more complicated matter. In general, the tool

SUBGROUPGRAPH (Ivantchev et al., 2000), also available

on the Bilbao Crystallographic Server, can be used for the

purpose of determining the relevant transformation (P, p).

This program only requires the index of H as subgroup of G

(easily derived from the knowledge of the number of formula

units Z per unit cell in both structures) to produce all possible

distinct subgroups of G of type H and their corresponding

transformations (P, p). Often there may be distinct (non-

equivalent) subgroups of type H with the same matrix P but

different shifts p. In these cases, the server tool WYCKSPLIT

(Kroumova et al., 1998) can be used to check the splitting of

the Wyckoff orbitals for each of the possible subgroups. A
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comparison of this Wyckoff splitting with the occupied

Wyckoff orbitals in the distorted structure is usually sufficient

to identify the relevant class of subgroups H and its possible

transformations (P, p).

Finally, the user should indicate a maximum allowed

distance (tolerance length) � in ångströms for the displace-

ment field. The tolerance length limits the allowed atomic

displacements for COMPSTRU and reasonable values will

rarely exceed 1 Å. For tolerance lengths much larger than this

value, the pairing routine in COMPSTRU may be unable to

reach an acceptable displacement field, and some specific

constraints about the possible pairings may be introduced by

the user, to restrict the possibilities. In any case, if a successful

comparison of the nondistorted and distorted structures

performed by the program requires atomic displacements that

greatly exceed 1 Å, the user should carefully check if the

atomic pairs determined by the program are sterically

reasonable.

The output of the program consists of two main blocks: a

structure-data block and a block where a summary of the main

results of the symmetry-mode analysis are displayed.

(i) Structural data. The output begins by showing the input

provided by the user, i.e. the high- and the low-symmetry

structures and the transformation matrix. Then follows the

high-symmetry structure transformed to the subgroup basis,

i.e. the reference structure. The atomic labels of the reference

structure are used to identify the atoms throughout the rest of

the program output. The next two tables describe the

displacement field. The first table lists the pairings found by

the program: for each atom in the asymmetric unit of the

reference structure an atom from the unit cell of the distorted

structure is assigned. The corresponding atomic displacements

calculated in terms of relative displacements ux, uy and uz with

respect to the reference unit cell are listed in the second table.

A measure of the total displacement in ångströms is given in

its fourth column, using for the calculation the unit cell of the

reference structure. In the case of polar structures, the user is

asked to indicate the polar direction, which is used for the

calculation of the origin shift necessary to avoid the inclusion

of a global translation in the displacement field. The tables

describing the displacement field are shown twice: without and

with the calculated origin shift. It is not unusual for the max-

imum atomic displacement to increase after the origin shift.

(ii) Summary block. Two tables summarize the main results

of the symmetry-mode analysis. The first lists the type of basis

modes and their number for each occupied orbital of the

nondistorted structure, specified by an atomic label and the

corresponding Wyckoff position. The symmetry modes are

distinguished by the label of the irrep to which they belong

(see footnote 3 for explanations on the notation). The second

table lists the amplitudes A� of the irrep distortion compo-

nents present in the distorted structure, also listing for each

allowed irrep its representative wavevector, its corresponding

isotropy subgroups and the distortion dimension (the number

of independent basis modes involved).

The option ‘Detailed information’ extends further the

output of the program by providing details on the basis modes

used for the analysis and the decomposition of the displace-

ment field.

(i) Symmetry modes. The polarization vectors of the basis

modes used are listed, labelling them by their irrep, the atom

label corresponding to the representative of the G Wyckoff

orbital having displacements for this mode and an additional

index for further enumeration in case of multiplicity. For each

polarization vector, the program only lists the atomic

displacements (in relative units with respect to the unit cell of

the reference structure) of the atoms of the relevant G

Wyckoff orbital that are present in the asymmetric unit of the

reference structure. The number of atoms in the list is there-

fore equal to the number of H Wyckoff orbitals originated

from the splitting of the relevant G Wyckoff orbital. The

assigned labels of the symmetry modes are used throughout

the rest of the output.

(ii) Decomposition. The results of the decomposition of the

displacement field are shown in sub-blocks: the data for each

of the irrep distortion components that contribute to the

structural distortion [cf. equation (8)] are given in a separate

sub-block. Each sub-block is headed by the corresponding

irrep symmetry label followed by the isotropy subgroup and

the transformation matrix-column pair (P, p) that relates the

conventional bases of the high-symmetry group G and the

corresponding isotropy subgroup. The subspace within the

n-dimensional irrep space, within which the distortion is

restricted to fulfil the symmetry compatibility with this

isotropy subgroup, is indicated in the form of a generic

n-dimensional vector, termed in the output as direction,

following the conventions of ISOTROPY (Stokes & Hatch,

2002b).

The program lists the global amplitude A� (in ångströms)

and the components a�;m, m ¼ 1; . . . ; n� , describing the

normalized polarization vector eð� j �; iÞ [in the chosen basis

modes; cf. equations (13) and (14)]. The last table in the sub-

block shows the same polarization vector in terms of

displacements (in relative units) of the atoms in the asym-

metric unit of the reference structure and normalized with

respect to its primitive unit cell. The option ‘Virtual structure’

produces a virtual structure corresponding to the presence of

only this irrep distortion component.

3.3. Availability

The program AMPLIMODES forms part of the Bilbao

Crystallographic Server (http://www.cryst.ehu.es; Aroyo,

Kirov et al., 2006; Aroyo, Perez-Mato et al., 2006) and uses the

databases and the results from other programs available on

this server. The program can be used from any computer via

the Internet. The URL is http://www.cryst.ehu.es/cryst/

amplimodes.html, where an online manual with a description

of the input and output of the program is also available.

4. Examples

The following two examples illustrate the use of the computer

program AMPLIMODES for the symmetry-mode analysis of
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specific distorted structures. In addition, the results obtained

by the program are compared with results from the literature.

4.1. Example 1: SrBi2Ta2O9

The Aurivillius family includes compounds with the general

formula Bi2mAn�mBnO3ðnþmÞ that are formed by [Bi2O2] slabs

separating perovskite-like blocks. These compounds show a

paraelectric ferroelectric phase transition from a tetragonal to

orthorhombic or monoclinic phases. The main features of

AMPLIMODES can be demonstrated by its application to the

ferroelectric structure of one of the most studied materials of

the Aurivillius family, SrBi2Ta2O9 (SBT). The symmetry-mode

analysis of SBT reported by Perez-Mato et al. (2004) can be

compared with the results of the program.

The format of the input structure data for AMPLIMODES

is illustrated by the high- and low-symmetry data of SBT

shown in Table 1. The experimental data for the tetragonal

I4=mmm phase are taken from Hervoches et al. (2001), while

the orthorhombic Cmc21 data correspond to the data given by

Rae et al. (1992). Note that the original structure description

of the low-symmetry phase by Rae et al. (1992) has been

previously transformed to the conventional setting Cmc21.

The automatic tool SETSTRU (http://www.cryst.ehu.es/cryst/

setstru.html), also available on the Bilbao Crystallographic

Server, can be used for this purpose.

The transformation matrix relating the conventional bases

of I4=mmm and Cmc21 can be given either in a concise form,

i.e. as c, a� b, aþ b; 1
4, �

1
4, 0, or written in matrix form: 

0 1 1

0 �1 1

1 0 0

�����
1=4

�1=4

0

!
: ð16Þ

The output produced by AMPLIMODES starts with the

reference structure (Table 2). The tables of pairings and

displacement field (Table 3) are recalculated after indicating

the polar direction [(0, 0, 1) in our case]. The three types of

irrep distortion component that can contribute to the

symmetry break I4=mmm�!Cmc21 are shown in the graph of

maximal subgroups [Fig. 1 obtained with SUBGROUP-

GRAPH (Ivantchev et al., 2000) or SYMMODES (Capillas et

al., 2003)]. It can be seen that a single irrep distortion

component is not sufficient to explain the full symmetry break
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Table 1
High- and low-symmetry structures for SBT.

The asymmetric unit of each structure is given in the conventional basis of the
space group.

139
3.9121 3.9121 24.984 90 90 90
7
Sr 1 2a 0 0 0
Ta 1 4e 0 0 0.5856
Bi 1 4e 0 0 0.2002
O 1 2b 0 0 0.5
O 2 4e 0 0 0.6593
O 3 4d 0 0.5 0.25
O 4 8g 0 0.5 0.0772

36
24.9839 5.5344 5.5306 90 90 90
8
Sr 1 4a 0.5000 0.2554 0.0220
Bi 1 8b 0.7007 0.2232 0.0486
Ta 1 8b 0.5849 �0.2478 0.0137
O 1 4a 0.5000 �0.2928 0.0131
O 2 8b 0.6591 �0.19455 0.0071
O 3 8b 0.2492 �0.0093 �0.2183
O 4 8b 0.5697 0.0056 �0.2414
O 5 8b 0.5831 �0.4835 �0.2625

Table 2
Reference structure for SBT.

This structure is obtained by expressing the high-symmetry structure in the
low-symmetry basis. Note that the number of independent atoms in this basis
increases owing to a splitting of the high-symmetry O4 orbital.

036
24.983999 5.532545 5.532545 90.000000 90.000000 90.000000
8
Sr 1 4a 0.000000 0.750000 0.000000
Ta 1 8b 0.585600 0.750000 0.000000
Bi 1 8b 0.200200 0.750000 0.000000
O 1 4a 0.500000 0.750000 0.000000
O 2 8b 0.659300 0.750000 0.000000
O 3 8b 0.250000 0.500000 0.250000
O 4 8b 0.077200 0.500000 0.250000
O 4_2 8b 0.077200 0.000000 0.750000

Table 3
Displacement field for SBT.

The components of the displacement field ux, uy and uz are given in relative
units. juj is the absolute displacement in ångströms.

Atom ux uy uz juj

Sr1 0.0000 0.0054 0.0220 0.1253
Ta1 �0.0007 0.0022 0.0137 0.0787
Bi1 0.0005 �0.0268 0.0486 0.3073
O1 0.0000 �0.0428 0.0131 0.2476
O2 �0.0002 0.0554 0.0071 0.3093
O3 0.0008 0.0093 0.0317 0.1839
O4 �0.0075 �0.0056 0.0086 0.1958
O4_2 0.0059 0.0165 �0.0125 0.1867

Figure 1
Maximal subgroup graph between space groups I4=mmm and Cmc21. The
irrep labels indicate the irrep distortion components (and the related
isotropy subgroup) that can contribute to the symmetry break
I4=mmm�!Cmc21. The label X corresponds to the wavevector
ð 1

2 ;
1
2 ; 0Þ in the Brillouin zone of the I4/mmm structure.



of the transformation; a combination of at least two distortions

belonging to different irreps is necessary. The SBT ortho-

rhombic structure requires a basis of 22 symmetry modes

(equal to the number of free parameters of the low-symmetry

structure) and their distribution into irrep types is shown in

the symmetry-mode summary table of the output of

AMPLIMODES reproduced in Table 4. There are four modes

of symmetry �þ1 , eight of symmetry ��5 , seven corresponding to

X�3 and three modes of symmetry Xþ2 . The data on the ��5
symmetry modes shown by the program under the ‘Detailed

information’ option are summarized in Table 5. The patterns

of the symmetry mode are specified by the relative atomic

displacements �x, �y, �z of one orbital representative. Owing

to the splitting of the O4 orbital (Wyckoff position 8g) during

the symmetry reduction I4=mmm�!Cmc21, ð8gÞI4=mmm�!

2� ð8dÞCmc21
, the relative displacements of two O4 atoms are

necessary for the pattern description of the modes O4 1 and

O4 2.

The amplitudes of the irrep distortion components present

in the Cmc21 structure of SBT calculated by AMPLIMODES

are given in Table 6. While not numerically equal, they are

equivalent to the results reported by Perez-Mato et al. (2004).

The differences are explained taking into account two

considerations. First, the polar ��5 ð¼ EuÞmode depends on the

origin of the Cmc21 phase. While AMPLIMODES satisfies the

‘arithmetic centre’ condition, keeping the arithmetic centre

fixed, the calculation of Perez-Mato et al. (2004) kept the

centre of mass fixed. A different method of normalization was

also used: AMPLIMODES normalizes the symmetry modes

with respect to the low-symmetry basis, but the normalization

in the mentioned reference was performed with respect to the

high-symmetry basis.

Tables 7 and 8 show the normalized polarization vector for

the ��5 mode, the former in terms of the symmetry modes

given in Table 5 [see equation (13)] and the latter as crystal-

lographic displacements; this mode can be seen in Fig. 2.

As stressed by Perez-Mato et al. (2004) the mode decom-

position of the distortion in SBTevidences the hierarchy of the

three intervening irrep distortion components. The two

primary-order parameters present in this phase can be iden-

tified as those with largest amplitude. The X�3 distortion
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Figure 2
Description of the ��5 distortion component for SBT. The directions of
the atomic displacements correspond to the directions of the arrows. The
lengths of the arrows have been exaggerated to properly illustrate the
displacements. The figure was prepared using the program FP_Studio
included in the FullProf suite.

Table 4
Summary of the basis modes in the distortion of SBT, distributed per type
of Wyckoff position.

Numbers in parentheses indicate the number of modes for each irrep.

Atoms WP Modes

O4 8g �þ1 (1), ��5 (2), Xþ2 (2), X�3 (1)
O2, Bi1, Ta1 4e �þ1 (1), ��5 (1), X�3 (1)
O3 4d ��5 (1), Xþ2 (1), X�3 (1)
O1 2b ��5 (1), X�3 (1)
Sr 2a ��5 (1), X�3 (1)

Table 5
Symmetry modes of SBT for the ��5 irrep.

Each symmetry mode involves a single atom in the asymmetric unit of the
high-symmetry structure. The modes O4 1 and O4 2 contain displacements
into two orbitals of the reference structure because they originate in the
splitting of a single orbital in the high-symmetry structure. The displacements
are normalized with respect the reference unit cell and given in relative units
with respect to its lattice parameters. The displacements of the remaining
atoms within the unit cell can be obtained from those listed by applying the
Cmc21 symmetry.

Mode label Atom �x �y �z

Sr1 1 Sr1 0.00 0.00 0.1278
Ta1 1 Ta1 0.00 0.00 0.0903
Bi1 1 Bi1 0.00 0.00 0.0903
O1 1 O1 0.00 0.00 0.1278
O2 1 O2 0.00 0.00 0.0903
O3 1 O3 0.00 0.00 0.0903
O4 1 O4 0.00 �0.0451 0.0451

O4_2 0.00 �0.0451 0.0451
O4 2 O4 0.00 �0.0451 0.0451

O4_2 0.00 �0.0451 0.0451

Table 6
Summary of the mode decomposition of SBT, indicating the amplitudes
(Å) of all intervening irrep distortion components.

K vector Irrep Direction
Isotropy
subgroup Dimension Amplitude

ð0; 0; 0Þ �þ1 ðaÞ I4/mmm (139) 4 0.07
ð0; 0; 0Þ Eu (¼ ��5 ) ða; aÞ Fmm2 (42) 8 0.51
ð 1

2 ;
1
2 ; 0Þ X�3 ða;�aÞ Cmca (64) 3 0.89

ð 1
2 ;

1
2 ; 0Þ Xþ2 ða;�aÞ Cmcm (63) 7 0.26

Table 7
Normalized polarization vector for the ��5 distortion component of SBT.

Sr1 1 Ta1 1 Bi1 1 O1 1 O2 1 O3 1 O4 1 O4 2
0.09 �0.06 0.70 �0.05 �0.20 0.33 �0.52 �0.28

Table 8
Normalized polarization vector for the ��5 distortion component of SBT,
expressed as displacements in relative units for the reference asymmetric
unit.

Atom �x �y �z

Sr1 0.0000 0.0000 0.0110
Ta1 0.0000 0.0000 �0.0053
Bi1 0.0000 0.0000 0.0632
O1 0.0000 0.0000 �0.0065
O2 0.0000 0.0000 �0.0182
O3 0.0000 0.0000 0.0301
O4 0.0000 0.0107 �0.0360
O4_2 0.0000 0.0107 �0.0360



component, having the largest amplitude, can be considered

the most unstable one, and an intermediate phase compatible

with only this component and of symmetry Cmcm can be

predicted. This conclusion is in agreement with the results of

ab initio calculations (Perez-Mato et al., 2004) and experi-

mental results (Hervoches et al., 2001). The X�3 and ��5
distortion modes of the experimental structure could be

identified as the two most unstable normal modes of the

parent structure.

4.2. Example 2: YMnO3

Our second example deals with the ferroelectric phase

transition of YMnO3 and the results of AMPLIMODES are

compared with those of Fennie & Rabe (2005). The compound

is ferroelectric, of symmetry P63cm, at room temperature and

paraelectric, with space group P63=mmc, above 1270 K. The

room-temperature lattice implies a threefold multiplication of

the unit cell with respect to the P63=mmc parent structure.

YMnO3 can be considered a multiferroic, and its sequence of

phase transitions has been the subject of discussion in the

literature. Some research groups have reported or proposed

an intermediate phase (Lonkai et al., 2004; Nénert et al., 2007),

with the possibility of having a proper ferroelectric transition.

This intermediate phase, however, has not been observed in

other studies (Katsufuji et al., 2002), while Fennie & Rabe

(2005) by means of ab-initio calculations have concluded that

the symmetry break P63=mmc�!P63cm is the result of a

single instability, i.e. a single phase transition, YMnO3 being in

fact an improper ferroelectric.

Fig. 3 shows the chain of maximal subgroups relating parent

and distorted symmetries in this case, with indication of the

allowed irrep distortion components that should be present in

the room-temperature structure. One can directly derive from

the figure the three possible mechanisms for the symmetry

break. A primary (unstable) mode of symmetry K3 (this mode

can be seen in Fig. 4) would be sufficient to explain the

symmetry break with a single phase transition. In this case,

one expects that the P63cm room-temperature structure will

have a strong dominant K3 component, while the symmetry-

allowed ��2 or K1 distortion components would be secondary

weaker distortions. The spontaneous polarization produced by

the polar distortion ��2 would be then a secondary induced

effect, and YMnO3 would be an improper ferroelectric. On

the other hand, if either ��2 or K1 were unstable primary

distortions, they could also explain the observed room-

temperature symmetry, and in this case an intermediate phase

would be expected. The intermediate phase would correspond

to the condensation of only one of the two primary modes (in

principle, the one with largest amplitude), and in this case the

ferroelectric properties of YMnO3 would be those of a proper

ferroelectric. In this second scenario, the hierarchy of ampli-

tudes of the three distortions is expected to be completely

different: the K3 distortion component as a secondary mode

would have a significantly smaller amplitude than the primary

��2 and K1 distortion components. Therefore, a mere mode

decomposition of the experimental distorted structure can be

sufficient to derive which of the two scenarios is more plau-

sible, and if the existence of an intermediate phase is to be

expected.5 Fennie & Rabe (2005) carried out this mode

decomposition and showed that it is in accordance with the

first model: a dominant K3 distortion component. This result

was also confirmed by their ab-initio calculations, which show

that the parent P63=mmc structure has a K3 unstable degen-

erate mode, and that no unstable modes of ��2 or K1 symmetry

exist. Moreover, the polarization vector of the experimental

K3 distortion component agrees very well with that of the

calculated unstable mode.
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Figure 4
Description of the K3 distortion component for YMnO3 in a [110]
projection. The directions of the atomic displacements correspond to the
direction of the arrows. For clarity the lengths have not been kept
proportional. The figure was prepared using the program FP_Studio
included in the FullProf suite.

Figure 3
Maximal subgroup graph between space groups P63=mmc and P63cm.
The irrep labels indicate the irrep distortion components (and the related
isotropy subgroup) that can contribute to the symmetry break
P63=mmc�!P63cm. The label K corresponds to the wavevector
ð 1

3 ;
1
3 ; 0Þ in the Brillouin zone of the P63=mmc structure.

5 Lonkai et al. (2004) proposed a third scenario with an isosymmetric transition
between a paraelectric intermediate phase and the final ferroelectric phase.
This is, however, based on incorrect arguments, as the authors overlooked the
necessary condensation of a polar mode as a secondary distortion, in the first
nonpolar–polar symmetry break.



Here, we show how this illuminating mode decomposition

can be performed automatically by AMPLIMODES. The

structures introduced as input are shown in Table 9. The high-

symmetry structure is taken from Lukaszewicz & Karut-

Kalicinska (1974), while the low-symmetry phase is from van

Aken et al. (2001). The matrix relating the settings of the two

structures is a� b, aþ 2b, c; 0, 0, 1
4. The origin shift of 1

4 along

the polar z direction is chosen in view of the arbitrary choice of

z = 0 for the Mn atom in the distorted structure, to make the

positions in the two structures comparable. The reference

structure is given in Table 10. The program then only requires

a shift of the origin along z of 0.00043 in relative units to keep

the arithmetic centre unmoved. The displacement field

obtained by comparison of the reference and the low-

symmetry structures is shown in Table 11.

A summary of the distortion amplitudes obtained by

AMPLIMODES is shown in Table 12. The amplitudes directly

coincide with those reported by Fennie & Rabe (2005). The

amplitude for mode K3 is much larger than the other two

modes, indicating that we are dealing with a phase that is the

result of a single antiferrodistortive phase transition, with its

ferroelectricity being of improper character. It must be

stressed that the amplitude of the polar mode ��2 strongly

depends on the choice of origin along the polar axis. A shift of

0.05 in relative units is enough to change the amplitude of the

��2 distortion component to 3.1 Å, while those of the other

modes remain unchanged. This is due to the spurious global

translation of the structure that the mode ��2 would include in

this case. It is therefore important for a meaningful compar-

ison of mode amplitudes that the cancellation of this arbitrary

component of the polar mode is achieved by means of an

adequate origin choice.

The crystallographic format of the distortion modes

provided by AMPLIMODES, separating amplitude and

normalized polarization vector, and listing the polarization

vector in two forms (in terms of components of the basis

modes and as relative displacements within an asymmetric

unit; Tables 13 and 14), can be compared with the form used

by Fennie & Rabe (2005), where absolute atomic displace-

ments are listed. From the description in terms of the

components of the basis modes, one can immediately observe

that the K1 distortion component involves mainly displace-

ments of Mn1 along the y direction, while this atom is not

involved in the other two irrep distortion components, either

because it is not symmetry allowed or because the displace-

ments are negligible. On the other hand, the polar mode ��2 is

basically an antiphase displacement along z of the Y and O

atoms O2 and O2_2 (O3 and O4 in the original structure),

while the large primary distortion K3, which is at the origin of

this phase, is a concerted mode where the symmetry-adapted

modes for Y and O atoms participate with similar weight.

research papers

J. Appl. Cryst. (2009). 42, 820–833 Danel Orobengoa et al. � AMPLIMODES 831

Table 10
Reference structure for YMnO3.

185
6.2527 6.2527 11.3900 90.0000 90.0000 120.0000
7
Mn 1 6c 0.000000 0.333330 0.000000
O 1 2a 0.000000 0.000000 0.000000
O 1_2 4b 0.666667 0.333333 0.000000
O 2 6c 0.000000 0.333330 0.837000
O 2_2 6c 0.333330 0.333330 0.663000
Y 1 2a 0.000000 0.000000 0.750000
Y 1_2 4b 0.666667 0.333333 0.750000

Table 9
High- and low-symmetry structure data for YMnO3.

194
3.61 3.61 11.39 90 90 120
4
Mn 1 2c 0.33333 0.66667 0.25
O 1 2b 0 0 0.25
O 2 4f 0.33333 0.66667 0.087
Y 1 2a 0 0 0

185
6.1387 6.1387 11.4071 90 90 120
7
Mn 1 6c 0 0.3352 0
O 1 2a 0 0 �0.0218
O 2 4b 0.33333 0.66667 0.0186
O 3 6c 0.3083 0 0.1627
O 4 6c 0.3587 0 �0.1628
Y 1 2a 0 0 0.2743
Y 2 4b 0.33333 0.66667 0.2335

Table 11
Displacement field for YMnO3.

ux, uy and uz are given in relative units. juj is the absolute displacement in
ångströms.

Atom ux uy uz juj

Mn1 0.0000 0.0019 �0.0004 0.0127
O1 0.0000 0.0000 �0.0222 0.2532
O1_2 0.0000 �0.0000 0.0182 0.2070
O2 0.0000 0.0254 �0.0002 0.1587
O2_2 �0.0250 �0.0250 �0.0007 0.1567
Y1 0.0000 0.0000 0.0239 0.2719
Y1_2 0.0000 �0.0000 �0.0169 0.1928

Table 12
Summary of the mode decomposition of the P63cm structure of YMnO3.

K vector Irrep Direction
Isotropy
subgroup Dimension Amplitude (Å)

ð0; 0; 0Þ �þ1 ðaÞ P63=mmc (194) 1 0.01
ð0; 0; 0Þ ��2 ðaÞ P63mc (186) 4 0.16
ð 1

3 ;
1
3 ; 0Þ K1 ða; 0Þ P63=mcm (193) 2 0.03

ð 1
3 ;

1
3 ; 0Þ K3 ða; 0Þ P63cm (185) 3 0.93

Table 13
Normalized polarization vectors for the ��2 , K1 and K3 distortion
components in YMnO3.

Mn1 1 O1 1 O2 1 Y1 1
0.0000 �0.1432 0.0020 0.0809

Mn1 1 O2 1
�0.9921 �0.1255

O1 1 O2 1 Y1 1
�0.5702 0.5858 0.5759



5. Conclusions

The symmetry-mode analysis of a distorted structure decom-

poses its structural distortion in a natural basis which is not

only symmetry-adapted but also adapted to the physics

underlying its stability. Distortion modes of different

symmetry have in general different behaviours for internal or

external perturbations, such as composition, temperature,

pressure, stress, and electric or magnetic fields. Their relative

contributions to the total distortion follow in general a hier-

archy that directly evidences the different roles that they play

in the stabilization of the phase. The polarization vectors of

the modes define the correlated atomic displacements that are

involved in each mode and provide valuable information for

understanding and manipulating, if wished, the structural and

physical properties of the phase. In general, the structure

response to external perturbations can be approximated to

variations of the amplitudes of the different symmetry-

adapted distortions, while variations of their polarization

vectors are relatively weak. A mode decomposition can thus

provide important information on the character, origin and

properties of a distorted phase, including possible ferroic

properties, expected thermal behaviour and probable phase

transitions. The program AMPLIMODES can perform this

symmetry-mode analysis for any displacively distorted crys-

talline phase of any symmetry. Only the distorted structure

and its high-symmetry reference, with respect to which the

analysis is desired, must be provided. The time required on the

Bilbao Crystallographic Server can vary from seconds to a few

minutes for structures of reasonable size (100 atoms per unit

cell or less). The program uses the asymmetric unit of the low-

symmetry phase as a common reference. It gives the results in

a conventional crystallographic format, which can be directly

used to construct and analyse virtual structures with any of the

modes considered in the mode decomposition. A compre-

hensive review of results that this program can provide and

their relevance in the investigation of a wide range of specific

materials will be presented elsewhere.

A symmetry-mode decomposition can be performed a

posteriori, i.e. once the low-symmetry structure is known, but

may also be very useful for the actual process of determining

the structure. The expected hierarchy among the distortion

components of different symmetry and the essential invar-

iance of their polarization vectors can also make very

advantageous a direct refinement of the amplitudes of a basis

mode, as collective coordinates, instead of the usual individual

atomic coordinates (Campbell et al., 2007). In collaboration

with J. Rodriguez-Carvajal we have recently included in

AMPLIMODES this possibility as an additional option. A

special output is provided to be directly used with FullProf

(Rodriguez-Carvajal, 1993), and this refinement program can

now use the amplitudes of the basis modes defined by

AMPLIMODES as positional parameters alternative to the

atomic coordinates. A detailed report on the use and possi-

bilities of this combined use of AMPLIMODES and FullProf

is in preparation.

This work has been supported by the Spanish Ministry of

Science and Technology (project MAT2008-05839) and the

Basque Government (project IT-282-07). The authors are
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