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A free web page under the name MAGNDATA, which provides detailed

quantitative information on more than 400 published magnetic structures, has

been made available at the Bilbao Crystallographic Server (http://www.cryst.

ehu.es). It includes both commensurate and incommensurate structures. In the

first article in this series, the information available on commensurate magnetic

structures was presented [Gallego, Perez-Mato, Elcoro, Tasci, Hanson, Momma,

Aroyo & Madariaga (2016). J. Appl. Cryst. 49, 1750–1776]. In this second article,

the subset of the database devoted to incommensurate magnetic structures is

discussed. These structures are described using magnetic superspace groups, i.e.

a direct extension of the non-magnetic superspace groups, which is the standard

approach in the description of aperiodic crystals. The use of magnetic

superspace symmetry ensures a robust and unambiguous description of both

atomic positions and magnetic moments within a common unique formalism.

The point-group symmetry of each structure is derived from its magnetic

superspace group, and any macroscopic tensor property of interest governed by

this point-group symmetry can be retrieved through direct links to other

programs of the Bilbao Crystallographic Server. The fact that incommensurate

magnetic structures are often reported with ambiguous or incomplete

information has made it impossible to include in this collection a good number

of the published structures which were initially considered. However, as a proof

of concept, the published data of about 30 structures have been re-interpreted

and transformed, and together with ten structures where the superspace

formalism was directly employed, they form this section of MAGNDATA. The

relevant symmetry of most of the structures could be identified with an

epikernel or isotropy subgroup of one irreducible representation of the space

group of the parent phase, but in some cases several irreducible representations

are active. Any entry of the collection can be visualized using the online tools

available on the Bilbao server or can be retrieved as a magCIF file, a file format

under development by the International Union of Crystallography. These CIF-

like files are supported by visualization programs like Jmol and by analysis

programs like JANA and ISODISTORT.

1. Introduction

Under the name MAGNDATA we have collected on the

Bilbao Crystallographic Server (http://www.cryst.ehu.es)

comprehensive information on more than 400 magnetic

structures, both commensurate and incommensurate.

MAGNDATA has been developed as a proof of concept for

the development of a database of magnetic structures based

on the systematic application of magnetic symmetry. This task

has been done within the framework of the efforts of the

Commission on Magnetic Structures of the IUCr (Inter-

national Union of Crystallography, 2015) for achieving a

standard in the communication of magnetic structures and an
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extension of the CIF format (Brown & McMahon, 2002) to

magnetic structures. For a detailed description of the context

under which this small database has been developed, we refer

to our previous article (Gallego et al., 2016), where we

presented and discussed the section of MAGNDATA devoted

to commensurate structures. This has more than 360 entries,

and the structures are described within the framework of the

symmetry relations described by the magnetic space groups

(MSGs), also called Shubnikov groups (Litvin, 2013; Stokes &

Campbell, 2011). MAGNDATA also includes about 40

incommensurate structures (see Fig. 1) which require a

different methodology, with their symmetry being given by

magnetic superspace groups (MSSGs). Here, we present and

discuss the main features of this second part of the collection.

We concentrate on the explanation of the information avail-

able for each structure, and the way this information can be

retrieved and analysed.

The symmetry of magnetic structures with incommensurate

propagation vector(s) cannot be described by an MSG (Litvin,

2013; Stokes & Campbell, 2011). Its symmetry is given instead

by a superspace group (Petřı́ček et al., 2010; Perez-Mato et al.,

2012). The superspace formalism was developed decades ago

to describe the symmetry properties of aperiodic crystals, i.e.

incommensurate crystals and quasicrystals, and it has become

the standard approach for any quantitative analysis of these

systems (Janssen et al., 2006, 2007; Van Smaalen, 2007; Stokes

et al., 2011; Janssen & Janner, 2014). Although it was clear

from the beginning (Janner & Janssen, 1980) that the new

concept was also extensible and applicable to incommensurate

magnetic structures, superspace symmetry has been under-

utilized in the characterization of magnetic order until very

recently, when computer programs which make use of the so-

called magnetic superspace groups were developed (Petřı́ček

et al., 2014; Campbell et al., 2006; Perez-Mato et al., 2015).

Using these symmetry groups defined in a (3 + d)-dimensional

superspace (d is the number of rationally independent

propagation vectors in the modulation), incommensurately

magnetic structures can be described following a crystal-

lographic methodology, similar to the case of non-magnetic

incommensurately modulated crystals and quasicrystals. For a

review of the properties and application of MSSGs, see Perez-

Mato et al. (2012). The use of magnetic superspace symmetry

ensures a robust and unambiguous description of both atomic

positions and magnetic moments within a common unique

formalism, and this is the approach followed in MAGNDATA.

The CIF format was extended years ago for the case of non-

magnetic incommensurate crystals and their superspace

symmetry (Brown & McMahon, 2002; Madariaga, 2005). The

magCIF file format that is being developed by the Commision

on Magnetic Structures of the IUCr has also extended the CIF

format to incommensurate magnetic structures with the

inclusion of the features associated with the MSSGs (Inter-

national Union of Crystallography, 2015). We could therefore

employ a preliminary version of the magCIF file format not

only for commensurate magnetic structures but also for

incommensurate structures. For the moment, only structures

with a single rational independent incommensurate propaga-

tion vector have been included, which means that their

superspace symmetry is described by a (3 + 1)-dimensional

superspace group. Extension to structures with (3 + d)-

dimensional superspace symmetry with d > 1 is, however,

straightforward.

2. Description of incommensurate magnetic structures

Under the superspace formalism, the data items defining an

incommensurate magnetic structure with a single rationally

independent incommensurate propagation vector are the

following:

(i) A unit cell that defines the average lattice periodicity of

the magnetic ordering if the incommensurate modulation is

taken out. This lattice acts as a reference, and its unit cell is

called the basic unit cell.

(ii) A primary incommensurate propagation vector (also

termed modulation wavevector in the usual superspace

formalism).

(iii) The magnetic (3 + 1)-dimensional superspace group

(MSSG), which defines the symmetry of the phase. The

symmetry operations of this group define both the symmetry

relations between the average positions of the atoms within

the average lattice, and those between their spin, displacive

and occupational modulations. These symmetry relations are

expected to be satisfied within the whole thermodynamic

stabilitity range of the incommensurate phase. The fourth

dimension included in these groups represents the argument

of the modulation functions, and a translation along this

internal coordinate corresponds to a global shift of the phase

of all modulation functions.

(iv) The average atomic positions (in relative units with

respect to the basic unit cell) and average magnetic moments

(if the atom is magnetic) of a set of atoms in the basic unit cell

that are not symmetry related and form an asymmetric unit.

The average position and average magnetic moments of any
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Figure 1
A screenshot, with a partial view of the online icon list of the
incommensurate magnetic structures that can be retrieved from
MAGNDATA.



other atom in the unit cell can be derived from those of the

asymmetric unit through the application of the symmetry

operations of the MSSG defined in (iii). The term ‘average’ is

used here to denote the periodic magnetic structure that

would be obtained if the reported incommensurate modulated

distortions present in the structure were cancelled. This

average periodic structure, also called the basic structure in

the traditional language of superspace formalism, acts as a

reference for both the magnetic and structural modulations,

where by construction k = 0 terms are not included. This

average structure, usually obtained from a refinement

considering all diffraction peaks, is to be distinguished from

the structure that could be obtained in a refinement in which

only the main reflections are used.

(v) Atomic modulation functions for the atoms in the

asymmetric unit in (iv), from which the atomic modulation

functions of any other atom in the basic unit cell can be

derived through the application of the symmetry operations of

the MSSG defined in (iii).

These five items constitute the basic information that is

stored for any of the incommensurate magnetic structures

gathered in MAGNDATA and this is the essential part of the

corresponding magCIF file that can be downloaded. It should

be remarked that some of the programs supporting

commensurate magCIF files that were mentioned by Gallego

et al. (2016) do not yet support magCIF files of incommen-

surate structures. Among those that are fully compatible, the

most important ones are Jmol (Hanson, 2013), ISOCIF

(Stokes & Campbell, 2014), ISODISTORT (Campbell et al.,

2006) and JANA (Petřı́ček et al., 2014).

As an example, Tables 1, 2 and 3 present the data available

in MAGNDATA for the incommensurate magnetic structure

of Ba3NbFe3Si2O14 reported by Marty et al. (2008) and

depicted in Fig. 2. These data are sufficient for a full definition

of this structure. The following remarks are important with

respect to these data.

2.1. Symmetry operations

The list of symmetry operations (see Table 1) is the only

obligatory information in a magCIF file with respect to

symmetry, and it fully defines the MSSG of the structure.

Operations are described with respect to the basic unit cell

that defines the average lattice. They are given in a form

similar to the symmetry operations of the magnetic space

groups, which was explained in the previous article on the

commensurate section of MAGNDATA (Gallego et al., 2016).

A direct extension of the standard notation for non-magnetic

superspace groups (Janssen et al., 2006) is used. Each

symmetry operation is described by the transformation of a

general four-dimensional position (x1, x2, x3, x4) plus the

‘�1/+1’ symbol to indicate the inclusion or not of time reversal

(second column of Table 1); this is also the format used in the

magCIF files. For a better direct visualization of the opera-

tions, MAGNDATA also includes an alternative generalized

Seitz notation (last column in Table 1), where the point-group

operations are indicated with labels that can be easily inter-

preted (Glazer et al., 2014).
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Table 1
Symmetry operations of the MSSG P32110(00�)000s describing the
superspace symmetry of the magnetic structure of Ba3NbFe3Si2O14

(#1.1.17; Marty et al., 2008).

The MSSG label is obtained from a direct extension of the notation
convention used for non-magnetic superpace groups (Janssen et al., 2006),
which essentially agrees with that employed by ISODISTORT (Campbell et
al., 2006) and JANA (Petřı́ček et al., 2014). The MSSG label included in
MAGNDATA is only illustrative, as there are no standard labels and the
group is fully defined by the provided list of symmetry operations.

N (x1, x2, x3, x4, �1) Seitz notation

1 x1, x2, x3, x4, +1 {1 | 0}
2 �x2, x1 � x2, x3, x4, +1 {3+

001 | 0}
3 �x1 + x2, �x1, x3, x4, +1 {3�001 | 0}
4 x2, x1, �x3, �x4, +1 {2110 | 0}
5 x1 � x2, �x2, �x3, �x4, +1 {2100 | 0}
6 �x1, �x1 + x2, �x3, �x4, +1 {2010 | 0}
7 x1, x2, x3, x4 + 1

2, �1 {10 | 0, 0, 0, 1
2}

8 �x2, x1 � x2, x3, x4 + 1
2, �1 {30+001 | 0, 0, 0, 1

2}
9 �x1 + x2, �x1, x3, x4 + 1

2, �1 {30�001 | 0, 0, 0, 1
2}

10 x2, x1, �x3, �x4 + 1
2, �1 {20110 | 0, 0, 0, 1

2}
11 x1 � x2, �x2, �x3, �x4 + 1

2, �1 {20100 | 0, 0, 0, 1
2}

12 �x1, �x1 + x2, �x3, �x4 + 1
2, �1 {20010 | 0, 0, 0, 1

2}

Table 2
Average atomic positions (average magnetic moments are all zero) of
symmetry-independent atoms in the incommensurate magnetic structure
of Ba3NbFe3Si2O14 (#1.1.17; Marty et al., 2008).

Unit cell a = 8.539 (1), b = 8.539 (1), c = 5.2414 (1) Å, � = 90, � = 90, � = 120�,
MSSG P32110(00�)000s (see Table 1).

Label Atom type x y z Multiplicity

Fe1 Fe 0.24964 (4) 0 0.5 3
Ba1 Ba 0.56598 (2) 0 0 3
Nb1 Nb 0 0 0 1
Si1 Si 0.666667 0.333333 0.5220 (1) 2
O1 O 0.666667 0.333333 0.2162 (4) 2
O2 O 0.5259 (2) 0.7024 (2) 0.3536 (3) 6
O3 O 0.7840 (2) 0.9002 (2) 0.7760 (3) 6

Figure 2
A schematic diagram of the incommensurate magnetic structure of
Ba3NbFe3Si2O14 (Marty et al., 2008), showing only the Fe atoms in three
consecutive basic unit cells along c, as retrieved from MAGNDATA
(#1.1.17) using its Jmol visualization tool.



The linear transformation of the components (x1, x2, x3, x4)

associated with any symmetry operation of an MSSG can be

expressed in the matrix form

0

R 0

0

h1 h2 h3 RI

0
BBB@

1
CCCA

x1

x2

x3

x4

0
BBB@

1
CCCAþ

t1

t2

t3

t4

0
BBB@

1
CCCA; ð1Þ

where R is a 3�3 matrix corresponding to a crystallographic

three-dimensional point-group operation expressed in the

basic unit-cell basis. The value of RI (either +1 or �1) and the

integers (h1, h2, h3) are fully determined by R and the value of

the incommensurate propagation vector k according to the

relation

k � R ¼ RIkþHR; ð2Þ

where HR is a reciprocal lattice vector of the average structure,

given by the integer components (h1, h2, h3) in the reciprocal

basis of the basic unit cell. In the example of Table 1, HR = (0,

0, 0) for any operation. The vector HR can have nonzero

components (h1, h2, h3) if the propagation vector lies on the

Brillouin zone surface, with some commensurate fractional

components. The Seitz notation for the generic operation in

equation (1) is {R0 | t1, t2, t3, t4} or {R | t1, t2, t3, t4}, depending on

the additional action of time reversal or not, where R now

stands for the corresponding three-dimensional point-group

operation. As shown in equation (2), the point-group opera-

tions present in the MSSG either keep the propagation vector

invariant (RI = +1) or change it to its opposite value (RI =�1),

in both cases modulo the basic reciprocal lattice.

2.2. Average structure

The set of operations {R | t1, t2, t3} and {R0 | t1, t2, t3}, which

can be derived from the set of operations of the MSSG, define

a three-dimensional MSG in the basis given by the chosen

basic unit cell, which describes the symmetry of the average

structure. This average structure, as an ordinary commensu-

rate magnetic structure, is defined by the values of the atomic

positions and magnetic moments of a chosen asymmetric unit

(see Table 2). The three-dimensional MSG resulting from the

operations in Table 1 is P32110, and this is the label used as the

first part of the MSSG label. It is a grey space group, as all

operations are present in the group both with and without

time reversal. This is the symmetry of the average structure,

and therefore all average magnetic moments are necessarily

zero. The list of average atomic positions for the asymmetric

unit in our example is given in Table 2. As in most incom-

mensurate structures, the average magnetic moments are

forced by symmetry to be zero and are not explicitly listed. In

general, if not appearing in the table they should be taken as

zero. The average commensurate structure can be recon-

structed from Table 2 and the given unit cell by making use of

the superspace group operations listed in Table 1. The effec-

tive space group to be used can be extracted from this table.

2.3. Modulation functions

The modulation of any atomic quantity A for any atom with

respect to its average value is in general given by a periodic

modulation function (of period 1) A�(x4) along a single

variable x4, such that the value of the quantity A of atom � in

the primitive unit cell L is given by the value of the modulation

function A�(x4) for x4 = k �(L + r�), where r� is the position of

atom � within the primitive unit cell. The modulation func-

tions may be anharmonic, and they are parameterized as

Fourier series in terms of cosine and sine functions. Thus, for

any component i of A, the modulation function is defined by

the real amplitudes A�i cos n and A�i sin n describing the modu-

lation function in the form

A�i x4ð Þ ¼
P

n

A�i cos n cos 2�nx4ð Þ þ A�i sin n sin 2�nx4ð Þ: ð3Þ

In the case of structural modulations, a Fourier series may

be ill-suited to describing the complex anharmonic modula-

tions that are often present in aperiodic crystals, and quite a

number of alternative basis functions are used for the para-

meterization of the modulation functions (Petřı́ček et al., 2014,

2016). In the case of magnetic modulations, however, the

Fourier decomposition of equation (3) reduces in most cases

to a first harmonic, or is limited to a few terms. In our example,

a single harmonic is present in the spin modulation, and its

Fourier cosine and sine amplitudes for the single symmetry-

independent Fe atom are reproduced in Table 3.

For instance, one can see in Table 3 for our example that the

cosine amplitudes of the Fe1 spin modulation are forced to be

zero except for the x component, while the sine amplitudes for

the x and y components are forced to have a 1:2 ratio and a z

component is also allowed. This means that the amplitude of

the sine modulation of the spin of the Fe atom at the position

(x, 0, 1
2 ) is on a plane perpendicular to the a direction, while the

spin cosine modulation is along a. In other words, the spin

modulation is forced by symmetry to follow a mixed screw/
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Table 3
Amplitudes of the cosine and sine functions describing the spin modulation function of the only symmetry-independent magnetic atom in the
incommensurate magnetic structure of Ba3NbFe3Si2O14 (#1.1.17; Marty et al., 2008).

MSSG P32110(00�)000s (see Table 1). k = (0, 0, 0.143). Magnetic moment components along the crystallographic axes are given in Bohr magnetons.

Magnetic moment Fourier cosine coefficients Magnetic moment Fourier sine coefficients

Symmetry constraints Numerical values Symmetry constraints Numerical values

Atom x y z x y z x y z x y z

Fe1 Mxcos1 0 0 4 0.0 0.0 Mxsin1 2Mxsin1 Mzsin1 �2.31 �4.62 0.0



cycloid modulation, the plane of the elliptical spin rotation

being in general oblique to the propagation vector along c,

with its plane director of type (u, 2u, v). One can then see in

Table 3 that the model reported by Marty et al. (2008) has

additional restrictions not forced by symmetry: it is a circular

screw modulation, with the plane of the spin rotation

perpendicular to the c direction and a spin modulus of

approximately 4 mB. This means that the amplitude of Mz sin 1 is

zero, and the nonzero values of Mx sin 1 and My sin 1 are corre-

lated with the value of Mx cos 1 to produce a sine component

along (1, 2, 0) with the same amplitude of 4 mB. (Note that our

parameterization has forced the inclusion of non-significant

digits for these amplitudes Mx sin 1 and My sin 1). The symmetry

constraints reproduced in Table 3 show that the value of

Mx sin 1 is, however, independent of Mx cos 1, and a nonzero

value of Mz sin 1 for Fe1 is also allowed, as these additional

variables do not break the superspace symmetry. Thus, the

number of free parameters in the most general model of the

spin modulation under this symmetry is three instead of one.

Not only can the plane of rotation of the spins be oblique with

respect to the propagation direction, but the rotation can also

be elliptical, instead of circular. To our knowledge this more

general model has never been tested, but an alternative model

for the same phase has been proposed by Scagnoli et al. (2013).

This second model indeed includes a nonzero Mz modulation.

Unfortunately, some quantitative details in the description of

the spin modulations seem to be missing and we have been

unable to interpret the model fully and transform it to an

unambiguous description within the superspace formalism. It

seems, however, that the modulated spin structure proposed

by Scagnoli et al. (2013) is not a mere improvement of the one

reported by Marty et al. (2008), corresponding to nonzero

values for the additional free variables mentioned above. The

spin modulations of the structure reported by Scagnoli et al.

(2013) do not seem to keep a constant rotation plane. Hence,

its superspace symmetry must be different from that of the

model proposed by Marty et al. (2008), and the two models are

therefore in contradiction. This is a clear example where the

systematic use of magnetic superspace symmetry becomes a

fundamental tool in MAGNDATA to classify and compare

different models for incommensurate magnetic structures.

2.4. Symmetry relations between modulation functions

The Fe1 site in the average structure has a multiplicity of 3,

i.e. there are two other Fe sites within the unit cell with spin

modulations that are symmetry related to that of Fe1 defined

in Table 3. Optionally, MAGNDATA can explicitly show these

symmetry-related modulations in the same format. The

general equation relating the spin modulation functions of two

atoms � and �, through an MSSG operation {R | t, t4}, such that

{R | t}r� = r� (modulo an average lattice translation), is (see

Perez-Mato et al., 2012)

M� RIx4 þ t4 þHR � r�ð Þ ¼ � det ðRÞRM� x4ð Þ; ð4Þ

where the parameters in equation (4) have been defined above

in the context of equations (1) and (2). The � sign depends on

the operation being either {R | t, t4} or {R0 | t, t4}. It is important

to remark that the parameterization chosen in the superspace

formalism, with the correspondence between the continuous

coordinate x4 and the factor k �(L + r�) when particularized for

a specific atom, makes the symmetry relation defined by

equation (4) independent of the choice made for atoms � and

� among those equivalent by lattice translations of the average

structure. This avoids a frequent source of confusion and

ambiguity in the traditional description using the factor k �L.

Table 4 shows the three average sites forming the orbit derived

from the Fe1 site in the asymmetric unit and their corre-

sponding modulation functions, as given in MAGNDATA.

The table explicitly shows the relation of the modulation

parameters of the two additional atoms with those of Fe1, as

derived from the general equation (4). This relation forces a

120� pattern of their spins on each plane along c. It is

important to remark that the so-called triangular chirality

(Marty et al., 2008) of the spin helical modulations is dictated

by the MSSG, with the relation of the spin helicities of the

three modulations being unique. The MSSG is chiral (as it is

the space group of the paramagnetic phase) and the
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Table 4
The set of atoms in the unit cell related by symmetry to the chosen independent magnetic atom Fe1 of Ba3NbFe3Si2O14, listed in Table 2 (#1.1.17), and the
symmetry-related amplitudes of the cosine and sine functions describing their spin modulation functions, according to the MSSG P32110(00�)000s,
defined in Table 1.

Magnetic moments are given in Bohr magnetons.

Atom x y z

1 0.24964 0.00000 0.50000
2 0.00000 0.24964 0.50000
3 0.75036 0.75036 0.50000

Magnetic moment Fourier cosine coefficients Magnetic moment Fourier sine coefficients

Symmetry constraints Numerical values Symmetry constraints Numerical values

Atom x y z x y z x y z x y z

1 Mx cos 1 0 0 4.0 0.0 0.0 Mx sin 1 2Mx sin 1 Mz sin 1 �2.31 �4.62 0.0
2 0 Mx cos 1 0 0.0 4.0 0.0 �2Mx sin 1 �Mx sin 1 Mz sin 1 4.62 2.31 0.0
3 �Mx cos 1 �Mx cos 1 0 �4.0 �4.0 0.0 Mx sin 1 �Mx sin 1 Mz sin 1 �2.31 2.31 0.0



enantiomeric form, which is described under the same MSSG,

will have opposite chirality for both the atomic positions and

the spin modulations. The helicities of all spin modulations in

the enantiomeric form will be opposite but maintain their

relative signs, as dictated by the MSSG. The triangular chir-

ality defined by Marty et al. (2008) is therefore the same for

both enantiomeric forms.

The symmetry constraints of the Fe1 spin modulation

discussed in x2.3 also come from the general condition

expressed by equation (4) for the operations that keep the Fe1

site invariant. The average position of this site is invariant for

the operation {2100 | 0, 0, 0, 0} (see Table 1), and equation (4)

particularized for this symmetry operation yields the

constraints of the Fe1 moment modulation that reduce the

possible free parameters of the spin modulation from six to

three.

The parameterization within the superspace formalism

expressed by equation (3) essentially coincides with the

traditional so-called k-vector description, employed for

instance in the FullProf suite (Rodrı́guez-Carvajal, 1993) for

incommensurate magnetic structures. The differences can be

considered minor, namely the use of k �(L + r�) instead of k �L

as the variable of the Fourier wavefunction, and the use of

cosine and sine functions instead of expressing the Fourier

series as complex exponentials. It is, however, the introduction

of symmetry relations between the modulation functions, as

given by equation (4) for each symmetry operation of the

MSSG, and the resulting constraints for the modulations of

atoms at special positions that make the major difference from

traditional parameterization. For the sake of future reference,

as the parameterization employed in FullProf is one of the

most commonly used, we include in Appendix A a transcrip-

tion of the symmetry relations resulting from an MSSG

operation and described by equation (4) into the para-

meterization employed by Basireps in FullProf.

2.5. Assignment of the MSSG

Computer tools for the efficient application of magnetic

superspace symmetry have only been made available very

recently (Petřı́ček et al., 2010, 2014). Hence, the use of

magnetic superspace symmetry is still rare and incommensu-

rate magnetic structures are usually reported without

controlling the possible symmetry of the model, or exploring

the constraints consistent with different possible alternative

MSSGs. Following the traditional representation method

(Bertaut, 1968; Izyumov et al., 1991), the structures are often

described using basis spin functions associated with a single

irreducible representation (irrep) of the parent space group,

but in many cases several MSSGs are possible for a single

active irrep (Perez-Mato et al., 2012, 2015), and therefore the

symmetry assignment becomes ambiguous if the proposed

model for the spin modulations is not reported in full detail. In

principle, any reported incommensurate structure can be

transformed into a symmetry-based description under an

MSSG, if the average structure and atomic modulations are

given without ambiguity. In the worst situation, it may happen

that all modulation functions are symmetry independent, and

the resulting MSSG is then limited to the minimum possible

superspace symmetry with its point group reduced to 1 or 110.

However, in many cases it is very difficult to extract a detailed

account of all spin atomic modulations. In particular, the

relative phase shifts between the spin modulations of different

atoms are often absent or ambiguous in the published reports,

making strenuous or even impossible the transformation of

the published models into the symmetry-based unified

description of this database. This has made it particularly

difficult to include incommensurate structures in this collec-

tion compared with commensurate ones.

As in the commensurate case, instead of identifying the

relevant MSSG with a bottom-up process, we have in most

cases followed a reverse methodology, exploring the possible

MSSGs for the known propagation vector and identifying the

one relevant for the reported structure. For this purpose, we

have used either the representation analysis tool available in

JANA (Petřı́ček et al., 2014), which determines the possible

MSSGs that can result from the action of a single irrep, or

ISODISTORT (Campbell et al., 2006), which can also deter-

mine the possible MSSGs for the cases where several irreps

are active. Both programs can provide a magCIF file for each

of the models corresponding to these possible alternative

symmetries, and they can then be compared with the

published structure. Similarly to the commensurate case

(Gallego et al., 2016), the relevant MSSG could be easily

identified in this way in most cases, except for the above-

mentioned structures where the information provided in the

publication is insufficient or ambiguous. Once the MSSG was

identified, the process was completed by transforming the

structure and modulation parameters of the original publica-

tion to the parameterization employed in the description

under this MSSG. The final model, with these transformed

parameters and any convenient complementary information,

was then added to a magCIF file and introduced into the

database.

In most cases, a label for the MSSG is included. This is given

by extending the labelling rules used for non-magnetic

superspace groups, and in general it does not uniquely

determine the operations of the group. An MSSG label in

general has the form [SG](k1, k2, k3)ab . . . , where [SG] is the

standard label of the MSG of the average structure, (k1, k2, k3)

is a generic expression of the most general form allowed by the

MSSG for the incommensurate propagation vector, and a,

b, . . . are an ordered set of zeros and/or letters that define the

value of t4 that the MSSG associates with each symmetry

operation represented in the label [SG], following the same

order. The zeros in this set of symbols are assigned not only to

the operations with t4 = 0, but also to those for which RI = �1,

as for them the value of t4 is not intrinsic and depends on the

origin chosen along x4. Thus, the MSSG of our example in

Table 1 is P32110(00�)000s, indicating that the average struc-

ture has the grey MSG P32110, i.e. it is non-magnetic, the

average magnetic moments being zero. The ‘000s’ at the end

shows that the threefold rotation 3+ has t4 = 0, while the

symbol s associated with 10 indicates that time reversal is
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maintained combined with a 1
2 translation along x4, i.e. the

operation {10 | 0, 0, 0, 1
2} belongs to the MSSG. For other

fractional values of t4, different letters are used following the

same convention as in non-magnetic superspace groups

(Janssen et al., 2006).

The presence in the incommensurate propagation vector of

some commensurate simple components like 1
2 can introduce

into the symmetry relations described by equation (4) nonzero

values for the vectors HR. This makes the symmetry relations

rather complex, with the phase shifts between modulations

depending explicitly on the specific value of the atomic posi-

tions. This complication can be avoided by using a supercell

for the basic structure, where the commensurate part of the

propagation vector becomes a reciprocal lattice vector, and

the effect of this part of the propagation vector is instead

introduced by a centring of the supercell in the (3 + 1)

superspace. Thus, for instance, an incommensurate propaga-

tion vector ( 1
2, 0, �) on a structure with a basic primitive unit

cell (a, b, c) can be replaced by (0, 0, �), if the basic unit cell is

chosen to be 2a, b, c and a centring {1 | 1
2, 0, 0, 1

2} is included

instead in the MSSG, which equally ensures that the modu-

lations in two consecutive original basic unit cells along a have

their phases shifted by � (or 1
2 for x4). If the MSSG includes

this kind of centring involving internal space, the [SG] label of

the basic space group has an initial letter X, instead of the

usual letters employed in ordinary space groups for indicating

the centring type (Janssen et al., 2006).

It is important to stress that, in contrast with the non-

magnetic superspace groups, there is no listing of all possible

MSSGs. Therefore, there is no setting of the MSSGs that can

be taken as standard. The list of the symmetry operations of

the MSSG compulsorily included in a magCIF file is therefore

more fundamental than in the commensurate case, in order to

define the magnetic symmetry of the structure unambiguously.

In most cases, we keep as the average unit cell that of the

original publication, except for cases where we have avoided

the presence of commensurate components in the propagation

vector through a multiplication of the reference average unit

cell accompanied by appropriate centring operations, as

explained above.

2.6. Ubiquity of the symmetry operation {1000 | 0, 0, 0, 1
2}

All single-k incommensurate structures necessarily have the

symmetry operation {10 | 0, 0, 0, 1
2} within their MSSG (Perez-

Mato et al., 2012). This is reflected in the MSSG label by the

presence of a grey magnetic space group label in the first part

and an s at the end of the label. This superspace symmetry

operation is due to the fact that any single harmonic modu-

lation in any system remains invariant if the action of time

reversal is followed by a global phase shift � (or 1
2 in x4 units)

of the modulation. The presence of this invariance as a

symmetry property of the whole phase implies the well known

restriction of single-k anharmonic incommensurate magnetic

structures, such that any anharmonicity of the magnetic

modulation within the same thermodynamic phase can only be

developed through odd harmonics. See, for instance, the case

of HoMgPb (MAGNDATA reference #1.1.32; Lemoine et al.,

2012), where the third and fifth harmonics have been refined.

The additional presence of a k = 0 component or even

harmonics in the magnetic modulation breaks the symmetry

operation {10 | 0, 0, 0, 1
2}, and this can only be explained by the

independent action of two propagation vectors, with the

magnetic phase thus being a 2k phase, although its symmetry is

still described by a (3 + 1)-dimensional MSSG. This is, for

instance, the case of the modulated structure reported for

DyMn6Ge6 (#1.1.10; Rodriguez-Carvajal & Bouree, 2012)

where, apart from the incommensurate propagation vector, a

k = 0 magnetic component has been observed and the MSSG

of the structure can be labelled as P62020(00�)h00 (the letter h

means that t4 = 1
6 for the sixfold rotation). This is the only entry

where the MSSG does not include the operation {10 | 0, 0, 0, 1
2}.

2.7. Structural modulations

As in the commensurate case, the non-magnetic degrees of

freedom are also subject to the magnetic symmetry group of

the phase. The use of the MSSG in the parameterization of the

structure makes explicit all non-magnetic degrees of freedom

released by the magnetic ordering, which may be significant if

the magnetoelastic coupling is strong enough. Thus, if the

MSG of the average structure is lower than the parent grey

group, new free parameters are present in the listing of its

asymmetric unit. The MSSG in general will also allow struc-

tural modulations, which are subject to symmetry correlations

analogous to those of equation (4), except for the fact that the

inclusion of time reversal in the operation is irrelevant. Thus,

the atomic displacive modulations (if present) of two

symmetry-related atoms � and � must be related according to

the equation

u� RIx4 þ t4 þHR � r�ð Þ ¼ Ru� x4ð Þ; ð5Þ

while for the modulation of a scalar quantity, such as the

occupancy probability or the atomic charge of the sites, the

following relation is required:

p� RIx4 þ t4 þHR � r�ð Þ ¼ p� x4ð Þ: ð6Þ

These equations, particularized for the operation {10 | 0, 0, 0,
1
2}, imply the restriction of the structural modulations to even

harmonics (Perez-Mato et al., 2012). This constraint of

magnetoelastic effects is often observed in single-k incom-

mensurate magnetic structures, and its universal validity for

this kind of structure becomes apparent if superspace

symmetry is considered.

Even-order diffraction satellites showing the presence of

magnetically induced structural modulations are often

observed, but their weakness has hampered any quantitative

analysis. Equations (5) and (6), however, imply that strong

specific correlations between magnetic modulation and

induced structural modulations should be expected, and this

can help to approach the problem of its characterization.

The symmetry-dictated division between odd magnetic and

even structural Fourier terms in the modulations can also

happen in incommensurate magnetic structures where the
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paramagnetic phase is an incommensurate structure with an

intrinsic structural modulation. This is the case for CeRuSn

(#1.1.35; Prokes et al., 2014), where the paramagnetic phase is

a monoclinic incommensurate structure with propagation

vector k = (0, 0, 0.35) and the magnetic propagation vector is

k/2. The resulting magnetic phase has structural and magnetic

modulations complying with an MSSG for the propagation

vector k/2, which also describes the constraints of the intrinsic

structural modulation that has only even Fourier terms.

2.8. Visualization and analysis

The output page for each structure includes an image

obtained using Jmol (Hanson, 2013) with only the magnetic

atoms. A link to an online three-dimensional viewer (Perez-

Mato et al., 2015) that uses JSmol, the JavaScript version of

Jmol, is also available (see Fig. 3). This online tool makes

directly accessible the simplest and most important commands

of Jmol through specific buttons, while the innumerable

commands available to manipulate and analyse the graphical

representation can be applied through a command window or

a pop-up console. The visualization options include the

possibility of shifting the global modulation phase both stati-

cally or dynamically (phase shift and phase sliding buttons) in

order to have access to all the configurations realized along

the modulation. The latest version of Jmol fully supports

MSSGs and accepts magCIF files as input files. Therefore, the

database entries can also be visualized and analysed locally

using Jmol, provided that the user has previously downloaded

this free open-source Java program.

3. Additional information

Apart from the minimal information necessary to build up the

magnetic structure in three-dimensional space, MAGNDATA

provides additional important data for each entry. This

information is also included in the corresponding magCIF file

that can be downloaded (local tags beyond the official magCIF

dictionary are used for some of the items). We list and discuss

here the most important items.

3.1. Magnetic point group

The magnetic point group associated with an incommen-

surate magnetic structure can be derived in a straightforward

manner from the knowledge of its MSSG, simply by taking the

rotation or roto-inversion operations, combined (or not) with

time reversal, which are present in the group. This information

is very important, as the magnetic point group governs the

macroscopic crystal tensor properties. As in the commensu-

rate case, a direct link to MTENSOR, another program on the

Bilbao Crystallographic Server, then allows the user to

explore, for this specific point group and the setting used for

the structure, the symmetry constraints that should be present

in the macroscopic tensorial magnetic, structural or magneto-

structural properties.

3.2. Parent space group, and the relationship between the
basic unit cell and the unit cell of the parent phase

Although a magnetic structure is in principle fully defined

by the data discussed in the previous section, as in the

commensurate case (Gallego et al., 2016), the knowledge of

the symmetry of its parent paramagnetic structure is funda-

mental to characterize the possible domains and the switching

properties of the material. Therefore, this parent space group

is given as additional information. Information about the

relationship between the basis used for this reference parent

phase and the basic unit cell employed is also included. This is

research papers

1948 Samuel V. Gallego et al. � MAGNDATA. II. The incommensurate case J. Appl. Cryst. (2016). 49, 1941–1956

Figure 3
A screenshot of the online visualization of the incommensurate magnetic structure SrFeO3 (#1.1.26; Reehuis et al., 2012).



given under the heading ‘Transformation from parent struc-

ture’.

If the point group of the MSSG is a strict subgroup of the

point group of the parent phase, structural ferroic properties

are to be expected in the incommensurate magnetic phase.

Thus, for instance, in the example of Ba3NbFe3Si2O14 (#1.1.17;

Marty et al., 2008) the parent space group is P321, i.e. its

magnetic point group is 3210, which is also the point group of

the MSSG. Therefore, there is no point-group symmetry break

and no distinct domains are expected, except those produced

by the loss of coherence in the modulation (in 1k incom-

mensurate structures, the usual trivial domains related by time

reversal with opposite spins are just the same structure with its

free global modulation phase shifted by �, or by 1
2 in x4 units).

On the other hand, if we take the case of MnSb2O6 (#1.1.38;

Johnson et al., 2013), the point-group symmetry break with

respect to the parent phase is 3210 ! 210, and domains related

by the lost threefold rotation are to be expected. Note that in

MAGNDATA we use in general for the average structure a

unit-cell basis as close as possible to that of the parent space

group. Thus, in this example the parent cell is maintained, and

the ‘Transformation from parent structure’ is the identity

transformation, although the monoclinic axis of the MSSG is

along (1, 0, 0) of the parent trigonal lattice. In this example,

knowledge of the symmetry break from a non-polar to a polar

point-group symmetry is sufficient to expect this material to

behave as a type II multiferroic, with a magnetically induced

electric polarization along the monoclinic axis of the MSSG.

The spins in MnSb2O6 follow cycloids along the c direction

(see Fig. 4), which is a typical geometry that introduces

polarity at a local level (Perez-Mato et al., 2015) and which has

been identified in quite a number of incommensurate multi-

ferroics (Tokura et al., 2014). However, it is important to stress

that the presence of spin cycloids is not sufficient for a polar

symmetry. The symmetry of magnetic structures is a global

property and there are other structures with spin cycloids, such

as Cs2CuCl4 (#1.1.1; Coldea et al., 1996), which are centro-

symmetric and therefore non-polar. In this second case, the

spin cycloids are related through the MSSG symmetry

operations, such that the space inversion is maintained with

symmetry-related cycloids of opposite chirality. In fact, in this

second example, compared with the parent symmetry, one can

see that the magnetic ordering does not break at all the point-

group symmetry of the system (see Fig. 4).

3.3. Representation analysis
In accordance with the Landau theory of phase transitions,

the magnetic ordering in most of the magnetic phases of this

collection has an order parameter transforming according to a

single irrep of the parent symmetry group (odd for time

reversal, when considered as a representation of the magnetic

parent grey group). In fact, as mentioned above, in most cases

the original structure determination was done following the

traditional representation method, where the possible spin

waves are restricted to a single irrep and, if necessary, the

process is extended to include additional ones.

The information on the activity of one or more irreps in the

spin ordering and its relation to the MSSG of the structure

that is being used in the database can be found in the

comments included for each entry and/or in a table with the

heading ‘Active irreps’. The irrep labels are those employed in

ISODISTORT, which have also been adopted by JANA and

by other programs on the Bilbao Crystallographic Server.

Finally, similar to the commensurate structures, each entry

also includes information (if available) on the transition and

experimental temperatures, references for the positional

structure, and some complementary comments; see Gallego et

al. (2016) for more details. In particular, it should also be

stressed here that many incommensurate magnetic structures

have been reported without providing a detailed account of

the average structure that has been assumed as the reference

for the modulation. In such cases, an average structure has

been taken from other sources, and the corresponding refer-

ence has been included.

4. Magnetic superspace symmetry versus irrep
descriptions

As mentioned above, in order to transform each structure to

the symmetry-based unified description of this collection, its

MSSG has been identified, if not given in the original refer-
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Figure 4
The spin arrangements in the magnetic structures of MnSb2O6 (#1.1.38;
Johnson et al., 2013) and Cs2CuCl4 (#1.1.1; Coldea et al., 1996), as given by
the online Jmol visualization tool of MAGNDATA, with an indication of
their symmetry properties. Both structures exhibit spin cycloids. In the
first case these produce a symmetry break into a polar symmetry, while in
the second case the centrosymmetric parent point-group symmetry is
maintained, through the MSSG symmetry relations between cycloids of
opposite chirality. A partial trail of the spin value for a shift in the free
global phase of the modulation is depicted, to show the rotation plane and
chirality of each cycloid.



ence, by exploring the possible MSSGs that can be realized if

the magnetic arrangement complies with one or more irreps of

the parent grey group. The MSSG that corresponds to the

correlations between the spin modulations introduced in the

model has then been detected.

The relation of the MSSG description to that using irreps

has been discussed in detail by Perez-Mato et al. (2012, 2015).

The database includes examples of the two different situations

that can happen if a single irrep is active, given below.

(i) A one-to-one correspondence exists between the irrep and

the MSSG. In this case, adapting the spin wave to fulfil the

transformation conditions of a single irrep spin mode for the

active irrep is in principle fully equivalent to the introduction

of the symmetry constraints of the corresponding MSSG.

However, this does not mean in general that the traditional

form in which the representation method is being used

introduces into the reported model equivalent restrictions to

those of the corresponding MSSG. The reason for the differ-

ence between the two approaches in these simple cases is that

the irrep-dictated transformation properties of the spin waves

with respect to the operations that transform k into �k are

usually disregarded. The irrep decomposition of the magnetic

configuration space is usually done considering the so-called

small irreps associated with the small space group Gk, formed

by the operations of the parent group that keep the propa-

gation vector k invariant. However, the operations of the

parent group that invert k imply in general additional

restrictions on the possible form of a spin wave transforming

according to a specific irrep. For instance, atomic sites related

by these operations do not necessarily split [see equations

(18a) and (18b) in Appendix A]. This problem was already

pointed out within the framework of the Landau theory of

some incommensurate magnetic phases (Harris et al., 2008;

Harris, 2007), and its relevance for a proper comparison of the

superspace symmetry formalism with the representation

method was discussed by Perez-Mato et al. (2012, 2015). In

general, the MSSG symmetry properties of a single-k spin

modulation transforming according to a single irrep are

defined for all operations of what we call the extended small

group Gk,�k, which includes both the operations that maintain

or invert the propagation vector.

As an example, let us consider the case of NaFeSi2O6

(#1.1.36; Baum et al., 2015), which has parent space group C2/c

and propagation vector (0, 0.78, 0). This propagation vector is

along the Brillouin zone (BZ) line LD, with its small space

group reduced to C2, and two possible irreps depending on the

one-dimensional small irrep being even or odd for the binary

rotation. The inversion and the mirror plane transform k into

�k, and therefore the two possible magnetic (full) irreps are

two-dimensional, namely mLD1 and mLD2 in the notation of

ISODISTORT (Campbell et al., 2006). It is a general property

that incommensurate spin modulations with the transforma-

tion properties of an irrep that is two-dimensional when

restricted to the (k, �k) subspace have superspace symmetry

properties described by a single MSSG. In these cases there is

a one-to-one correspondence between the irrep and this

MSSG (Perez-Mato et al., 2012). This is illustrated graphically

in Fig. 5 for our example. Each possible irrep results in one

single MSSG, and the corresponding symmetry relations and

constraints on the spin waves can be derived from the general

relation of equation (4).

The only symmetry-independent magnetic atom, Fe1(1), in

the parent phase of NaFeSi2O6 is at Wyckoff position 4e (0, y,
1
4). It is therefore invariant for the symmetry operation {2010 | 0,

0, 1
2}. This symmetry operation is conserved either as {2010 | 0, 0,

1
2, 0} in the MSSG corresponding to mLD1 or as {2010 | 0, 0, 1

2,
1
2}

in the MSSG of mLD2. In the first case, equation (4) forces the

modulation to be longitudinal with the spin constrained along

the b direction, the first harmonic amplitudes being reduced to

the two parameters My cos 1 and My sin 1. In the second case, i.e.

the irrep mLD2, the operation {2010 | 0, 0, 1
2,

1
2} forces a trans-

verse modulation, with four free parameters (Mx cos 1, 0,

Mz cos 1) and (Mx sin 1, 0, Mz sin 1). Both MSSGs include the

inversion operation which, for a convenient choice of origin

along the internal space x4, can be expressed without any shift

along x4 as {�1 | 0, 0, 0, 0}. Equation (4) particularized for the

inversion implies that the modulation amplitudes of Fe1(2)

(see Fig. 5) are related to those of Fe1(1), in the form

M� cos 1[Fe1(2)] = M� cos 1[Fe1(1)] and M� sin 1[Fe1(2)] =

�M� sin 1[Fe1(1)] for � = x, y, z, for any of the two irreps/

MSSGs. Therefore, the magnetic modulation does not split the

Fe sites, and both MSSGs keep a single symmetry-indepen-

dent site, with two and four free parameters for mLD1 and

mLD2, respectively, to describe the Fe spin modulations. For
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Figure 5
Possible MSSGs for an incommensurate magnetic structure with parent
space group C2/c and propagation vector (0, 0.78, 0) (line LD of the BZ),
resulting from the condensation of a spin wave transforming according to
one of the two possible irreps. The two possible groups, one for each irrep,
are depicted as maximal subgroups of the parent grey group. A partial
view of the Fe spin modulation reported for NaFeSi2O6 (#1.1.36; Baum et
al., 2015) is represented below its MSSG, compared with the alternative
model corresponding to the other irrep or MSSG. In both cases, the spin
modulations of the atoms Fe1(1) and Fe1(2), which are symmetry related
by the space inversion in the parent phase, keep a symmetry relation
through the MSSG. While the mLD1 longitudinal wave has two free
parameters to fit, the transverse mLD2 wave has four free parameters,
and its collinearity is not symmetry protected. Transverse helical
modulations or more complex phase relations are possible within the
same irrep/MSSG.



comparison, the traditional representation approach yields

four and eight parameters for the spin basis functions,

respectively, which by fixing the global arbitrary phase of the

incomensurate modulation reduce to three and seven.

It should be remarked that, in the MSSG description, the

arbitrary global phase of the modulation is fixed by the setting

used for the MSSG, if it contains operations transforming k

into �k. The origin along x4 is fixed by the choice of the t4
values of these operations. The structure of NaFeSi2O6

reported by Baum et al. (2015) corresponds to the MSSG C2/

c10(0�0)s0s (irrep mLD2), but the model reported by Baum et

al. (2015) includes additional constraints, as the spin

arrangement is collinear and the number of refined para-

meters has been limited to three. Note however that the irrep,

or equivalently the MSSG, allows more complex arrange-

ments, including transverse helical ellipsoidal modulations.

In contrast with the commensurate case, an incommensu-

rate spin arrangement transforming according to a single irrep,

and having the MSSG symmetry associated with this irrep, can

imply phase relations between the modulations of atoms that

are symmetry independent in the parent space group (Perez-

Mato et al., 2012). This may sound paradoxical, but it is a

special property of incommensurate structures and the

symmetry associated with the phase shift of their modulation.

In order that two incommensurate basis functions associated

with symmetry-independent atoms correspond to a single spin

mode transforming according to a single irrep, their relative

phases should be correlated. Unfortunately, this single irrep

condition, which is part of the constraints of the associated

MSSG, is often not considered. This is a recurrent problem

encountered when translating reported incommensurate

structures into the superspace formalism. For example, the

compound CaFe4As3 (#1.1.5; Manuel et al., 2010) has four

independent Fe sites of type 4c (x, 1
4, z) in the parent space

group Pnma and was reported to have centrosymmetric

properties in the incommensurate phase. The irrep mY1 with

k = (0, 0.375, 0) associated with its spin arrangement

constrains the spin modulations to be longitudinal, but the

transformation properties of this irrep by the inversion

operation also force the modulations for the four independent

Fe atoms to be in phase (Perez-Mato et al., 2012). The

modulation phases of the different sites were refined, however

(Manuel et al., 2010), and reached relative values close to zero

or �, as expected from the centrosymmetric MSSG associated

with a single irrep mode. Accordingly, to keep a centrosym-

metric symmetry we had to ignore the small deviations from

these values when introducing the structure into the database.

(ii) Several alternative MSSGs are possible, depending on

how the spin basis functions of the irrep are combined. If the

active irrep restricted to the extended small group Gk,�k has a

dimension larger than two, more than one MSSG is in general

possible, depending on the direction taken by the order

parameter within the irrep space. This implies that specific

linear combinations of the irrep spin basis modes can yield

different MSSGs (so-called irrep epikernels), while an arbi-

trary combination of the whole set of basis modes reduces the

symmetry to the minimum possible MSSG for the irrep (the

so-called irrep kernel) (Perez-Mato et al., 2012, 2015). The

refined models are usually obtained by introducing ad hoc

restrictions on the combination of irrep spin basis modes or

without using irreps, simply assuming simple models following

a trial-and-error approach. In many cases these restrictions

make the model comply with one of the several possible

MSSGs.

An example is the magnetic structure reported for SrFeO3

(#1.1.26; Reehuis et al., 2012), shown in Fig. 3. Having a

paramagnetic cubic phase with space group Pm3m, the

reported magnetic structure has a propagation vector of type

(u, u, u), i.e. it lies along the line LD of the Brillouin zone, and

the active irrep is mLD3. Fig. 6 shows the group–subgroup

hierarchy of all possible MSSGs which can result from the

action of a magnetic order parameter transforming according

to mLD3. Six different superspace symmetries are in principle

possible for the magnetic phase. The magnetic atom sits at the

origin, and the irrep decomposition of its magnetic repre-

sentation for this propagation vector is mLD3(4) + mLD2(2),

where the dimensions of the irreps restricted to the extended

small group Gk,�k are indicated in parentheses. The subspace

of mLD3-type spin configurations is therefore spanned by four

independent basis modes. As shown in Fig. 6, if these modes

are combined arbitrarily the superspace symmetry is reduced

to a minimum triclinic group, while very specific combinations

can maintain either the trigonal symmetry or centrosymmetric

monoclinic symmetries with the monoclinic axis perpendicular

to the propagation vector. The model reported for SrFeO3

corresponds to one of these three maximum symmetries, and a

single free parameter is to be refined. The magnetic modula-

tion breaks space inversion and maintains the trigonal

symmetry compatible with the propagation vector, but keeps

the system non-polar owing to the binary rotations perpen-

dicular to the propagation vector that are also preserved.
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Figure 6
Possible MSSGs for an incommensurate magnetic structure with parent
space group Pm3m and active irrep mLD3, with its propagation vector on
the symmetry line LD (u, u, u) of the BZ. The groups are depicted
showing their group–subgroup hierarchy and only one subgroup per
conjugacy class is shown. The set of integers (n, m) above each group
indicates the degrees of freedom of the spin wave for a magnetic atom at
the origin under each symmetry, separating those associated with the
irrep mLD3(n) from those with mLD2(m), these latter corresponding to
possible secondary spin modes if m 6¼ 0. The MSSG of the magnetic phase
of SrFeO3 (#1.1.26; Reehuis et al., 2012) is indicated.



As shown in Fig. 6, some of the possible MSSGs resulting

from a single active irrep may have degrees of freedom

associated with secondary irreps having compatible epi-

kernels, which are supergroups of this particular MSSG. For

instance, this is the case for the MSSG C2/m10(�,0,�)0ss, which

implies two free parameters in the spin modulation, but if

restricted to the mLD3 irrep only one parameter is necessary,

the second one corresponding to a secondary symmetry-

compatible longitudinal spin component transforming

according to mLD2.

The database also contains structures whose spin modula-

tion corresponds to the superposition of two primary irreps,

the resulting MSSG being the intersection of the irrep

epikernels associated with each irrep. This intersection

depends in general on the relative phase shift between the two

irrep spin modulations (Perez-Mato et al., 2012), and again

various MSSGs are possible even if the two primary irreps

separately result in a single possible MSSG. Among these

cases, one has to include those with spin modulations corre-

sponding to a single irrep but with arbitrary relative phase

shifts between the basis functions, which decrease the resulting

MSSG, breaking all operations that transform k into �k.

These structures must be considered the result of the action of

two distinct order parameters transforming according to the

same irrep. The possibility of reducing the symmetry through

the superposition of irrep modes of the same irrep is a pecu-

liarity of incommensurate structures, not present in the

commensurate case.

5. Summary of the structures in the collection

Table 5 summarizes the symmetry properties of the incom-

mensurate structures gathered in this collection. The first 13

cases in the list are structures where the magnetic point group

does not vary with respect to the paramagnetic phase. No

ferroic properties are therefore to be expected. No twinning

can exist, not even the simple case of spin switching. In all

these cases a single primary irrep is active and its small irrep is

one dimensional, such that there is a one-to-one correspon-

dence between the MSSG and the irrep; once the active irrep

has been identified, the identification of the corresponding

MSSG is rather straightforward. These structures have usually

been refined assuming some simple form for the modulation as

helical, cycloidal, sinusoidal etc. This kind of modulation

usually complies with the MSSG associated with the active

irrep, except in cases like that of CaFe4As3, discussed in the

previous section, but they often include additional restrictions

that are not forced by the MSSG or by the reduction to a

single irrep. For instance, this is the case for CaCr2O4 (#1.1.15;

Damay et al., 2010), where the most general spin modulation

under its MSSG is a set of elliptical cycloidal modulations with

opposite chiralities by pairs and with the normal to its rotation

plane being allowed to be oblique on the plane perpendicular

to the propagation vector. However, the cycloids of the

reported model lie on the ac plane, and it is not mentioned if a

more general orientation was explored and checked. A similar

situation occurs in the case of Ba3NbFe3Si2O14 (Marty et al.,

2008), discussed in x2.

The remaining structures with a single active primary irrep

break the parent point-group symmetry and can be classified

into three sets:

(i) Structures where the direction of the propagation vector

is the only agent of this symmetry reduction, with the

extended small space group Gk,�k being a strict subgoup of the

parent space group, while the active small irrep is one

dimensional. Also in these cases, there is a one-to-one corre-

spondence between the small irrep and the MSSG, but this

latter only keeps the point-group symmetry corresponding to

Gk,�k, which is lower than that of the parent phase. There are

seven cases of this type.

(ii) Structures where the propagation vector does not break

the parent symmetry, Gk,�k coinciding with the full parent

space group, and the reduction of the point-group symmetry

being due to the fact that the active irrep is multidimensional.

This is the case for the magnetic structures of RbFe(MoO4)2

(#1.1.2), MnAu2 (#1.1.13), CeRhIn5 (#1.1.16), CeAuAl3
(#1.1.33) and FeOCl (#1.1.40). Their MSSG is one of the

epikernels of maximum symmetry of the active irrep. It is

remarkable that the spin modulations in these structures are

circular helical modulations and they are symmetry protected

(see Fig. 7). This contrasts with other entries in the collection,
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Figure 7
The incommensurate magnetic structure of CeRhIn5 (#1.1.16; Bao et al.,
2000), with helical spin modulations that are symmetry dictated by the
superspace symmetry of the phase. Only Ce atoms are shown. The label
of its MSSG is indicated. The space group of the paramagnetic phase is
P4/mmm and the incommensurate propagation vector is of type ð12 ;

1
2 ; �Þ.

The spin modulation breaks space inversion but maintains a non-polar
point-group symmetry. This MSSG is one of seven possible for the
magnetic order parameter active in this phase, corresponding to a four-
dimensional irrep.



where the regular spin helical or cycloidal spin arrangement

which has been reported is not symmetry dictated and other

more complex arrangements are possible for the same irrep

and the same MSSG. For instance, this is the case for MnGe

(#1.1.14; Makarova et al., 2012), where the Mn atom occupies a

general position and therefore its spin modulation has no

symmetry restriction, while the refinement was done assuming

pure helical modulations.

The case of FeOCl (#1.1.40) within this set is also repre-

sentative of the problems that have arisen when transforming

the published structures into an unambiguous symmetry-

based description. According to our interpretation, the figures

in the publication show spin cycloids with chiralities that are

inconsistent with the corresponding equations in the text. We

therefore had to decide which of the two representations was

the correct one, and finally considered the equations to be

more reliable.

(iii) Structures where the propagation vector and a multi-

dimensional irrep are both agents of the point-group

symmetry break. This is the case for SrFeO3 (#1.1.26),

discussed in the previous section, and also for Cr (#1.1.3).

The remaining 13 structures involve the presence of spin

modulations according to two irreps. In all cases except one,

the two irreps refer to the same propagation vector. The

superposition of two irreps implies in general a drastic

symmetry reduction. This set includes those structures where

the symmetry reduction takes place through the superposition

of two spin modes transforming according to the same irrep,
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Table 5
A list of the incommensurate magnetic structures included in MAGNDATA, with a summary of their symmetry properties.

Compounds having no point-group symmetry break are listed first. The dimension of the small irrep is given with an asterisk in those cases where the refined model
includes restrictions that are not symmetry forced and apparently have not been fully assessed. Type II multiferroics are indicated with the suffix (MFII).

Material Reference†
Parent space
group

Propagation
vector

Magnetic
superspace
group

Magnetic
point
group

No. of
primary
irreps

Dimension
of small
irrep

Cs2CuCl4 (#1.1.1) (a) Pnma (No. 62) (0, 0.472, 0) Pnma10(0�0)000s mmm10 1 1
CaFe4As3 (#1.1.5) (b) Pnma (No. 62) (0, 0.475, 0) Pnma10(0�0)000s mmm10 1 1
TbMnO3 (#1.1.6) (c) Pbnm (No. 62) (0, 0.27, 0) Pbnm10(0�0)s00s mmm10 1 1*
MnWO4 (#1.1.12) (d) P2/c (No. 13) (�0.214, 0, 0.457) X2/c10(�0�)0ss 2/m10 1 1
CaCr2O4 (#1.1.15) (e) Pbnm (No. 62) (0, 0, 0.477) Pbnm10(00�)s00s mmm10 1 1*
Ba3NbFe3Si2O14 (#1.1.17) ( f ) P321 (No. 150) (0, 0, 0.143) P32110(00�)000s 3210 1 1*
NdFe3B4O12 (#1.1.18) (g) R32 (No. 155) (0, 0, 1.502) R3210(00�)t0s 3210 1 1
UPtGe (#1.1.19) (h) Imm2 (No. 44) (0.554 (1), 0, 0) Imm210(�00)0s0s mm210 1 1
Li2IrO3 (#1.1.20) (i) Fddd (No. 70) (0.5768 (3), 0, 0) Fddd10(�00)0s0s mmm10 1 1
PrNi2Si2 (#1.1.34) ( j) I4/mmm (No. 139) (0, 0, 0.87) I4/mmm10(00�)00sss 4/mmm10 1 1
CeRuSn (#1.1.35) (k) C2/m (No. 12) (0, 0, 0.175) C2/m10(�0�)0ss 2/m10 1 1
NaFeSi2O6 (#1.1.36) (l) C2/c (No. 15) (0, 0.78, 0) C2/c10(0�0)s0s 2/m10 1 1*
Ca3Co2O6 (#1.1.39) (m) R3c (No. 167) (0, 0, 1.02) R3c10(00�)00s 3m10 1 1
Cr (#1.1.4) (n) Im3m (No. 229) (0, 0, 0.95) I4/mmm10(00�)00sss 4/mmm10 1 1
Ce2Pd2Sn (#1.1.9) (o) P4/mbm (No. 127) (0.105, 0, 0) Pbam10(�00)0s0s mmm10 1 1
MnGe (#1.1.14) (p) P213 (No. 198) (0, 0, 0.167 (4)) P21212110(00�)00ss 22210 1 1*
TmCu2Ge2 (#1.1.23) (q) I4/mmm (No. 139) (0.117, 0.117, 0) Fmmm10(�00)0s0s mmm10 1 1
CeMgPb (#1.1.27) (r) I4/mmm (No. 139) (0.448, 1

2, 0) I112/m10(��0)00s 2/m10 1 1*
TmMgPb (#1.1.28) (r) I4/mmm (No. 139) (0.412, 0, 0) Immm10(�00)0s0s mmm10 1 1
ErMgPb (#1.1.29) (r) I4/mmm (No. 139) (0.816, 0, 0) Immm10(�00)0sss mmm10 1 1
RbFe(MoO4)2 (#1.1.2) (MFII) (s) P3 (No. 147) (1

3,
1
3, 0.458) P310(1

3
1
3�)ts 310 1 2

MnAu2 (#1.1.13) (t) I4/mmm (No. 139) (0, 0, 0.283) I42210(00�)q00s 42210 1 2
CeRhIn5 (#1.1.16) (u) I4/mmm (No. 139) (1

2,
1
2, 0.297) P42210(1

2
1
2�)q00s 42210 1 2

CeAuAl3 (#1.1.33) (v) I4mm (No. 107) (0, 0, 0.52) I410(00�)qs 410 1 2
FeOCl (#1.1.40) (w) Pmmn (No. 59) (0.286, 1

2, 0) X2/n10(��0)00s 2/m10 1* 2
Cr (#1.1.3) (n) Im3m (No. 229) (0, 0, 0.95) Immm10(00�)s00s mmm10 1 2
SrFeO3 (#1.1.26) (x) Pm3m (No. 221) (0.129, 0.129, 0.129) R3210(00�)t0s 3210 1 2
TbMnO3 (#1.1.7) (MFII) (c) Pbnm (No. 62) (0, 0.27, 0) Pbn2110(0�0)s00s mm210 2 1, 1
TbMnO3 (#1.1.8) (MFII) (c) Pbnm (No. 62) (0, 0.27, 0) Pbn2110(0�0)s00s mm210 2 1, 1
MnWO4 (#1.1.11) (MFII) (d) P2/c (No. 13) (�0.214, 0, 0.457) X210(�0�)0s 210 2 1, 1
Li2IrO3 (#1.1.21) (y) Cccm (No. 66) (0.57 (1), 0, 0) C22210(�00)s00s 22210 2* 1, 1
Sr3Fe2O7 (#1.1.22) (z) Im3m (No. 229) (0.1416, 0.1416, 0) X22210(��0)s00s 22210 2* 1, 1
CrAs (#1.1.24) (aa) Pnma (No. 62) (0, 0, 3562) P21212110(00�)00ss 22210 2* 1, 1
TbMgPb (#1.1.30) (r) I4/mmm (No. 139) (0.843 (1), 0, 0) I2/m10(��0)00s 2/m10 2 1, 1
DyMgPb (#1.1.31) (r) I4/mmm (No. 139) (0.841 (1), 0.016 (1), 0) I2/m10(��0)00s 2/m10 2 1, 1
HoMgPb (#1.1.32) (r) I4/mmm (No. 139) (0.835, 0, 0) I2/m10(��0)00s 2/m10 2 1, 1
MnSb2O6 (#1.1.38) (MFII) (bb) P321 (No. 150) (0, 0, 0.182) C210(00�)0s 210 2 1, 1
LiFeAs2O7 (#1.1.25) (cc) C2 (No. 5) (0.709, 0, 0.155) C110(���)0s 110 2 (2�1) 1, 1
NaFeSi2O6 (#1.1.37) (MFII) (l) C2/c (No. 15) (0, 0.78, 0) C210(0�0)ss 210 2 (2�1) 1, 1
DyMn6Ge6 (#1.1.10) (o) P6/mmm (No. 191) (0, 0, 0.1651) P62020(00�)h00 62020 2 2, 1

† References for the magnetic structures: (a) Coldea et al. (1996), (b) Manuel et al. (2010), (c) Kenzelmann et al. (2005), (d) Urcelay-Olabarria et al. (2013), (e) Damay et al. (2010), ( f )
Marty et al. (2008), (g) Janoschek et al. (2010), (h) Mannix et al. (2000), (i) Biffin, Johnson, Choi et al. (2014), ( j) Blanco et al. (2010), (k) Prokes et al. (2014), (l) Baum et al. (2015), (m)
Agrestini et al. (2008), (n) Perez-Mato et al. (2012), (o) Rodriguez-Carvajal & Bouree (2012), (p) Makarova et al. (2012), (q) Penc et al. (2012), (r) Lemoine et al. (2012), (s) Kenzelmann
et al. (2007), (t) Herpin & Meriel (1961), (u) Bao et al. (2000), (v) Adroja et al. (2015), (w) Hwang et al. (2000), (x) Reehuis et al. (2012), (y) Biffin, Johnson, Kimchi et al. (2014), (z) Kim et
al. (2014), (aa) Keller et al. (2015), (bb) Johnson et al. (2013), (cc) Rousse et al. (2013).



mentioned in the previous section. Two cases of this type have

been collected, namely LiFeAs2O7 (# 1.1.25) and NaFeSi2O6

(#1.1.37). In the case of NaFeSi2O6 (Baum et al., 2015), the

condensation of two independent order parameters trans-

forming according to the same irrep seems well established, as

this phase is preceded by another one with a single order

parameter belonging to this irrep (see #1.1.36). In contrast, the

model of NaFeSi2O6 (#1.1.37) was derived following the

traditional representation method, where irrep restrictions

coming from the operations transforming k into �k are not

considered, and a more symmetrical model with a single irrep

order parameter was not tested.

The last structure in the list, DyMn6Ge6 (#1.1.10), is the only

case where the incommensurate irrep superposes with a k = 0

spin modulation. As mentioned above, this implies that the

operation {10 | 0, 0, 0, 1
2}, present in all other structures, is

absent, and the MSG of the average structure does not include

the time-reversal operation. In contrast with all the other

cases, the atomic magnetic moments therefore have nonzero

average values. Typical incommensurate systems belonging to

this class, with an additional k = 0 spin mode and a non-grey

point-group symmetry, are all structures with conical spin

modulations.

The magnetic point-group symmetry change between the

paramagnetic and magnetic structures listed in Table 5 for

each structure governs its possible ferroic properties. In

particular, a symmetry break from a non-polar to a polar

point-group symmetry is sufficient to have the symmetry

conditions for a type II multiferroic, if it is an insulator. In

general, a necessary (but not sufficient) condition for a non-

polar/polar symmetry break is either a multidimensional small

irrep for the magnetic order parameter, or the presence of two

or more primary irreps, if their small irrep is one dimensional.

As shown in Table 5, this collection includes five type II

multiferroics. In four of them the symmetry break involves the

superposition of two primary irreps (TbMnO3, MnWO4,

MnSb2O6 and NaFeSi2O6), and only in the case of

RbFe(MO4)2 is a single multidimensional primary irrep active

(actually, it is a physically irreducible representation). It is

important to stress that the multiferroic character of these

phases can be derived directly from knowledge of the

magnetic point group of the magnetic structure compared with

that of the paramagnetic phase, without appealing to any

particular mechanism. An additional important fact to note is

that the presence of the symmetry operation {10 | 0, 0, 0, 1
2} in all

single-k incommensurate structures precludes the existence in

these phases of any linear magnetoelectric or magnetoelastic

effect within a single domain, the magnetic point-group of

these phases being grey.

6. Conclusions

As a final word of caution, we should stress that the trans-

formation to the unambiguous quantitative description used in

this database has in many cases required an exercise in the

interpretation of the tables, equations and/or figures in the

original publications, and this may have been incorrect. Often,

some clear ambiguities or inconsistencies were detected in the

data, and the transformation of the proposed structure to a

fully unambiguous description under a certain MSSG required

some additional assumptions on our part. In such cases,

comments describing the problem are included both on the

entry web page and in the magCIF file. Our interpretation of

some of the publications may therefore be defective and we

would greatly appreciate any report of such types of problem.

Finally, we stress, as we did in our previous paper (Gallego

et al., 2016), that this collection does not pretend to become a

complete and updated database of all published incommen-

surate magnetic structures. We lack the means for such an

endeavour. However, we hope that this work will stimulate

further efforts within the community in the direction of the

standardization and unambiguous communication of incom-

mensurate magnetic structures through files in magCIF

format, with the aim of making such a database possible in the

not-too-distant future. Meanwhile, authors having published

any incommensurate magnetic structure that is absent from

this collection, and who are interested in having it included,

are invited to contact us through the given email address.

APPENDIX A
Superspace symmetry relations using the
parameterization of FullProf

In the superspace description, for single-k modulations, the

spin modulation of a representative atom � in the unit cell of

the basic structure is expressed as

M� x4ð Þ ¼ M�
0 þ

P
n¼1;:::

M�
sin n sin 2�nx4ð Þ þM�

cos n cos 2�nx4ð Þ
� �

;

ð7Þ

with the value of the magnetic moment M�
L of atom � in unit

cell L being given by

M�
L ¼ M� x4 ¼ q � Lþ r�ð Þ

� �
: ð8Þ

Here k is the propagation vector and r� is the position of atom

� within the unit cell. All quantities are real, and they are

decomposed into three components along the crystallographic

directions:

M�
sin n ¼ M�

x sin n;M�
y sin n;M�

z sin n

� �
;

M�
cos n ¼ M�

x cos n;M�
y cos n;M�

z cos n

� �
:

ð9Þ

In FullProf (Basireps), this spin modulation is expressed

instead as

M�
L ¼ M�

0 þ
P

n

S�nk exp �i2�nk � Lð Þ þ S��nk exp i2�nk � Lð Þ
� �

:

ð10Þ

Note the explicit minus sign for the Fourier amplitude S�k
associated with k. Comparing the two expressions, the

following relation exists between the two types of parameter:

2S�nk exp i2�nk � r�ð Þ ¼ M�
cos n þ iM�

sin n; ð11Þ

and for a single harmonic
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2S�k exp i2�k � r�ð Þ ¼ M�
cos 1 þ iM�

sin 1: ð12Þ

If we call

S�k ¼ SðkÞ�x; SðkÞ�y; SðkÞ�z
� �

; ð13Þ

then

M�
cos 1 ¼ 2Re SðkÞ�x; SðkÞ�y; SðkÞ�z

� �
exp i2�k � r�ð Þ

� �
;

M�
sin 1 ¼ 2Im SðkÞ�x; SðkÞ�y; SðkÞ�z

� �
exp i2�k � r�ð Þ

� �
:
ð14Þ

If {R, � | t, t4} is a symmetry operation, where � is �1 or +1

depending on whether the operation includes time reversal or

not, and a second atom � is related to atom � such that

{R | t} r� = r� + L (with L some particular lattice translation),

then the Fourier amplitudes of atom � are related to those of

atom � by

M� RIx4 þ t4 þHR � r�ð Þ ¼ � det ðRÞR �M� x4ð Þ; ð15Þ

where RI (+1 or �1) and the reciprocal lattice vector HR are

defined by the relation

k � R ¼ RIkþHR: ð16Þ

Equation (15) implies that

M�
cos 1 þ iM�

sin 1 ¼ exp i2� t4 þHR � r�ð Þ
� �

� � det ðRÞR � M�
cos 1 þ RIiM

�
sin 1

� �
; ð17Þ

or, in terms of the FullProf (Basireps) parameters,

S�k ¼ � det ðRÞRS�k exp �i2�k � r� � r�
� �� �

� exp i2� t4 þHR � r�ð Þ
� �

; ð18aÞ

if RI = +1, and

S�k ¼ � det ðRÞRS��k exp �i2�k � r� þ r�
� �� �

� exp i2� t4 þHR � r�ð Þ
� �

; ð18bÞ

if RI = �1.

However, the two atomic positions are related in the form

k � r� � RIk � r� ¼ k � tþHR � r�: ð19Þ

Equations (18a) and (18b) can then be put as

S�k ¼ � det ðRÞRS�k exp �i2�k � tð Þ exp i2�t4ð Þ; ð20aÞ

if RI = +1, and

S�k ¼ � det ðRÞRS��k exp �i2�k � tð Þ exp i2�t4ð Þ; ð20bÞ

if RI = �1.

Note that these equations depend on the value of t in {R | t},

which implies a dependence on the choice made for atom �
among the set of atoms equivalent by lattice translations of the

basic structure. Equations (20a) and (20b) can be used to

introduce a certain superspace symmetry operation when

using FullProf (Basireps), but it has to be applied system-

atically, including all atoms in an orbit and all the operations of

the superspace group.

A1. Example: inversion operation

If the system has an inversion centre {�1 | 0, 0, 0, 0} and two

atoms are related by this inversion operation, so that r� = �r�,

then their Fourier amplitudes according to equations (20a)

and (20b) must be related in the form

S�k ¼ S��k : ð21Þ

However, if by convenience one is using as a representative

for atoms � the atom fulfilling r� = �r� + (1, 0, 0), then {R | t}

in equations (20a) and (20b) becomes {�1 | 1, 0, 0} and the

relation of equation (21) must be changed to

S�k ¼ S��k exp �i2�k � ð1; 0; 0Þ½ 	: ð22Þ

This dependence on the atom representative is not present

in the superspace parameterization, where for any k which

does not include commensurate components making HR 6¼ 0

the relation is

M�
cos 1 ¼M�

cos 1;

M�
sin 1 ¼ �M�

sin 1:
ð23Þ

If the inversion centre and atom � lie at the origin, such that

� = � for {�1 | 0, 0, 0, 0}, then its spin Fourier amplitude should

be real:

S�k ¼ S��k : ð24Þ

However, if atom � lies at ( 1
2, 0, 0), then the relevant MSSG

operation is {�1 | 1, 0, 0, 0} and the same phase factor as in

equation (22) appears. This phase shift only implies that, in

fact, all modulations for atoms lying on inversion centres are

in phase, considering their relative positions. Indeed, in the

superspace parameterization, the invariance of atom � for an

MSSG operation {�1 | t, 0}, whatever the value of t, implies

that M�
sin 1 = 0 (if HR = 0). The application of the MSSG

operations transforming k into �k with a given value of t4
implies a specific choice of the global phase of the modulation.

As this phase is arbitrary, the important result is that all atoms

lying on inversion centres should be in phase.
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Petřı́ček, V., Fuksa, J. & Dušek, M. (2010). Acta Cryst. A66, 649–
655.
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